首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
针对高应力软岩公路隧道的特点,对湖北宜巴高速公路峡口隧道开展了地应力测试、隧洞收敛下沉、接触应力、结构受力等项目的监测工作。地应力测试结果表明,虽然隧洞埋深不大,但由于构造应力的存在,仍属于高地应力区。施工监测结果表明,高应力软岩隧道变形与结构受力具有明显的时空效应,与开挖方式、工作面距离以及支护时机密切相关。由于隧洞围岩软弱破碎,加之处于高应力作用下,在工作面通过后,岩体产生持续性的流变变形,导致隧洞产生挤压大变形和结构受力的持续增加,达到支护结构强度极限,最终导致围岩失稳和支护体系的失效。基于上述研究成果,提出了相应的高应力软岩大变形支护设计对策。研究成果为高应力软岩隧道变形与结构受力的时空效应性提供了监测数据支持,为峡口隧道的施工和支护设计提供了依据,对我国西部其他高应力软岩公路隧道的建设具有借鉴意义  相似文献   

2.
徐坤  王志杰  孟祥磊  孙长升 《岩土力学》2013,34(Z2):464-470
围岩松动圈支护理论已被工程界广泛认同和接受,如何准确快速地探测松动圈深度更好的为工程服务,成为大家所关注的问题。以新建兰新铁路大梁隧道现场试验为依托,对测试断面围岩松动圈深度采用单孔声波测试法、地质雷达法进行探测,结合现场地应力及岩体物理力学参数实测结果进行数值模拟分析可知,以单孔声波测试法结果为基准,地质雷达测试结果与声波法测试结果基本一致,在围岩含水区域测试结果存在一定偏差,地质雷达发出的电磁波对含水区域比较敏感,发射和接收干扰较大,但地质雷达作为一种快速、无损的检测方法应该得到大力推广应用。由于数值计算时没有考虑爆破对围岩松动圈的影响,其计算结果与声波法探测结果相比偏小,但是两者的变化趋势基本上是一致的。数值计算应以现场地应力及岩体物理力学参数测试结果为依据,使计算结果更加真实,更好地为工程决策服务。  相似文献   

3.
随着大量深埋地下工程的建设,尤其是大型矿山,与巷道围岩稳定有关的各种地质灾害问题突出,因此其一直备受关注。某铁矿巷道埋深450~800m,变形剧烈,局部持续大变形,呈条带状臌出。地应力实测结果表明,矿区地应力总体特征为σv≥σH〉σh,现今水平构造作用明显,最大水平主应力为13-21MPa,接近岩体自重。大变形洞段围岩为裂隙化岩体,强度低,蠕变性明显。有限元分析表明,巷道开挖后在边墙与顶拱和底板交界处产生约40MPa的高应力,造成了围岩变形破坏。后期围岩在高应力作用下产生大变形,其宏观变形破坏特征与软岩相似。另围岩加固与支护发现,普通的挂网喷锚支护已很难适应高应力条件下的岩体大变形。论文基于地应力实测结果,通过对巷道围岩大变形成因机制的探讨以及原加固支护效果的总结,为后期巷道围岩变形破坏的防治提供了参考。  相似文献   

4.
黄锋  朱合华  李秋实  李恩璞 《岩土力学》2016,37(Z1):145-150
围岩松动圈是制定隧道支护措施和整体稳定性评价的重要参数和依据,如何快速准确地确定松动圈范围已备受关注。以张-石(张家口至石家庄)高速公路上的多条隧道工程为背景,采用声波探测和理论计算相结合的方法,对不同埋深、围岩等级条件下的隧道松动圈进行了研究。基于D-P准则推导了围岩应力松动圈的弹塑性理论和损伤理论计算方法,其计算结果均小于单孔声波法测试结果,但两者变化规律类似。由于考虑了岩体的峰后软化特性,损伤理论分析法计算结果比弹塑性理论更加接近于实测值,运用损伤理论对围岩(特别是低级别围岩)松动圈进行预测是可行的,研究结果对其他类似工程具有借鉴作用。  相似文献   

5.
基于湿度应力场理论,推导了考虑膨胀应力和剪胀特性的圆形隧道开挖后围岩力学响应的弹塑性解。将隧道软弱围岩遇水膨胀现象视为湿度-应力耦合过程,基于Fick第二定律,推导了圆形隧洞围岩内湿度扩散非稳态解。采用非关联流动法则,获得了隧道高膨胀势区的应力和位移解答。以两种不同质量岩体开挖的隧洞为例,分析了膨胀围岩应力和变形的影响因素。结果表明,考虑膨胀应力(取决于围岩含水率变化和湿度膨胀系数)时,塑性区扩大,松动圈厚度增加,应力收敛变慢。当膨胀应力增大到一定程度时,塑性区将出现拉应力区。膨胀岩隧洞开挖遇水作用,膨胀应力增加的围岩变形远大于地应力引起的围岩变形。同时,应力剪胀对膨胀性围岩的变形影响不容忽视,尤其是在支护抗力较小的情况下,洞壁处径向位移增加显著。  相似文献   

6.
评估地质条件以及开挖风险是地下空间设计和施工中的重要阶段之一。在选择合适的开挖方法和支护系统时,识别和估计岩体的变形潜在趋势非常重要。在本研究中,对萍莲高速莲花隧道中的岩体变形潜在趋势进行了研究。首先介绍了莲花隧道的工程地质环境、隧道围岩工程特性、岩体质量评价以及现场实测的隧道变形情况,然后运用经验法和半经验-半理论法预测莲花隧道变形趋势,并将预测结果与实际变形监测情况进行对比。结果表明,莲花隧道的大变形主要受松散破碎、遇水膨胀的软弱围岩和丰富的地下与地表水以及断层破碎带与构造活动的影响。对于莲花隧道而言,现行大变形预测方法普遍存在一定问题:经验法主要依据岩体质量分级结果进行变形趋势预测,具有一定的主观性,其预测结果与实际变形情况存在一定偏差;半经验-半理论方法中运用围岩强度与应力关系进行预测效果较好,但基于围岩强度应力比的Jethwa法、Hoek法与ISRM法预测结果偏保守,且针对无变形段的预测效果较差。综上所述,在工程勘察与设计阶段,应客观、细致地进行围岩质量分级、地应力量测、地下水与地质构造勘探等工作,结合经验法、半经验-半理论方法对大变形趋势和变形量值进行预测,综合研判隧洞沿线变形趋势,为大变形支护结构设计、施工措施提供充分可靠的依据。  相似文献   

7.
深埋隧道层状围岩变形特征分析   总被引:7,自引:0,他引:7  
李晓红  夏彬伟  李丹  韩昌瑞 《岩土力学》2010,31(4):1163-1167
层状岩体在地下工程中经常遇到的,它具有明显的各向异性力学性质。结合共和隧道现场监测和数值模拟相结合的方法对层状岩体的破坏特征进行了分析,研究结果表明:围岩的变形位移、破坏区都主要集中隧道拱顶右侧,即靠河侧大于靠山侧。隧道围岩变形破坏区不在最大主应力方向上,而是在岩体层理垂直方向。层状岩体中洞室变形破坏特征除了因地形产生的偏压影响外,更重要的是受地层结构特征的影响,即与层状岩体的力学性质极大相关,其结果可为指导隧道的施工和设计提供有效依据。  相似文献   

8.
赵瑜  李晓红  顾义磊  陈陆望  李丹  陈浩 《岩土力学》2007,28(Z1):393-397
隧道失稳和维护困难是高地应力隧道的普遍问题,对隧道的支护设计提出了更高的要求。研究从地下工程岩体应力环境变化和岩体强度变化的角度探讨了高应力隧道围岩的变形破坏机制。根据重庆某深埋隧道围岩实际情况,运用FLAC3D三维显式有限差分法分析软件,建立了摩尔-库仑剪破坏与拉破坏复合的应变软化模型。通过隧道的三维数值计算,分析了高应力环境下隧道周边塑性区分布、应力场、位移场等的分布特点,得到了高应力隧道围岩在高地应力环境下的破坏规律。通过物理模型验证了高应力隧道围岩的破坏特点,并进行了超载试验,将其与数值模拟进行对比,进一步验证了所建数值模型的科学性。  相似文献   

9.
贾宏俊  王辉 《岩土力学》2015,36(4):1119-1126
深部软岩巷道承受高地应力作用,导致围岩产生流变大变形是影响其安全稳定的重要因素。以阳煤一矿西大巷工程为例,分析软弱围岩变形破坏机制;建立能够反映工程地质状况及初始设计方案的有限元模型,以现场监测变形数据和钻孔窥视围岩变形破坏深度为基础,反演获取围岩力学参数和蠕变参数。提出适合软弱流变岩体的可缓冲渐变式双强壳体支护方法,即根据围岩破坏情况进行分层注浆加固,并在最外部架设可缩性U型钢支架,形成可变形缓冲层。建立新型支护方案的有限元模型,利用围岩反演参数预测围岩变形情况,并通过与现场监测数据对比分析,验证了所提支护方案的有效性。  相似文献   

10.
初期支护对软岩隧道围岩稳定性和位移影响分析   总被引:15,自引:3,他引:12  
软弱岩体隧道开挖后,围岩变形具有异常显著的流变性。基于Poyting-Thomoson模型,对隧道围岩位移进行了粘弹性解析分析,根据所得出的解析解,结合渝(重庆)沙(长沙)高速公路石龙隧道位移监控量测实践,对初期支护后隧道围岩变形特征量进行了分析对比,结果表明,理论曲线能较好地反映围岩实际位移变化特征。最后通过将支护前后围岩受力状态与单轴和三轴应力状态岩石蠕变进行类比,得知初期支护在一定程度上减小了围岩的最终变形量,可以有效地抑制隧道围岩的变形速率。其结果为确定合理的二次支护时机提供了理论依据,对同类隧道的施工支护具有很好的指导意义和较高的参考价值。  相似文献   

11.
深埋隧道层状岩体弹塑性本构模型研究   总被引:3,自引:1,他引:2  
共和隧道围岩为薄层状灰岩,岩样试件单轴压缩全过程曲线表现为明显的各向异性,且隧道现场监测发现围岩屈服破坏也具有明显的方向性。据此选择合适的屈服准则及其强度参数随岩层倾角(与最大主应力的夹角)变化规律。结合各向异性弹性本构方程,获得横观各向同性弹塑性本构关系并利用C++语言实现。利用该本构模型对共和隧道进行数值模拟,计算结果与破坏特征基本吻合,验证了该模型的正确性,可以用于该隧道支护设计及稳定性分析。  相似文献   

12.
某隧道区地应力测量与岩爆分析   总被引:5,自引:0,他引:5  
介绍了某高速公路隧道区2个钻孔(深度为280和567 m)的水压致裂法地应力测试结果,并就施工期岩爆发生的可能性和隧道围岩稳定性进行了初步分析。  相似文献   

13.
缓倾角层理各向异性岩体隧道稳定性的物理模型试验研究   总被引:4,自引:1,他引:3  
李丹  夏彬伟  陈浩  白世伟 《岩土力学》2009,30(7):1933-1938
层状岩体的广泛分布是地下工程无法回避的现实。以渝湘高速公路共和隧道为工程背景,采用自行研制的弹脆性模型相似材料,制作出层状岩体隧道模型。采用大型真三轴岩土工程模型试验机进行加载试验,采用围岩应变监测、洞室内窥摄影、试件破坏形态的研究与分析,从而对缓倾角层理岩体中隧道的二次应力分布特征及破坏机制进行研究。试验中还通过超载系数,提供了一个安全储备的定量评估指标。试验的破坏特征与隧道实际破坏一致,说明了模型试验的正确性,同时也为顺层偏压隧道的加固机制研究及加固设计提供了试验基础。  相似文献   

14.
初始地应力对隧洞开挖爆生裂隙区的影响研究   总被引:1,自引:0,他引:1  
陈明  卢文波  周创兵  罗忆 《岩土力学》2009,30(8):2254-2258
隧洞开挖过程中控制爆炸对岩体的损伤,减小爆破裂隙范围,对保证工程安全具有重要意义。基于爆炸应力波作用下爆生裂隙形成机制的研究,采用摩尔-库仑准则及最大拉应力准则,研究了初始地应力对爆炸应力波作用下爆生裂隙区比例半径的影响。研究结果表明,初始地应力对爆生裂隙范围有显著影响。在压剪破坏模式下,爆生裂隙区比例半径随地应力的增大而减小,地应力侧压系数影响爆生裂隙区比例半径在洞壁圆周的分布。考虑围岩应力卸荷影响后,沿隧洞径向的爆生裂隙区比例半径比不考虑卸荷的小。拉伸破坏导致的岩体爆生裂隙区比例半径一般比压剪破坏模式下爆生裂隙比例小,爆炸应力波作用下隧洞围岩更容易沿结构弱面发生压剪破坏。  相似文献   

15.
基于三维地应力测量的岩爆预测问题研究   总被引:1,自引:0,他引:1  
岩爆预测中常用的动态指标切向应力σθ是与初始地应力场密切联系的。根据开阳磷矿实测三维地应力值和该矿多层岩体赋存的特点,分析了洞室围岩岩性、空间巷道、倾斜层理等因素对σθ的影响。开阳磷三维地应力测试成果表明,埋深浅的砂岩比埋深大的红页岩的垂直地应力值要大近3倍,提出了考虑测点岩性的地应力场区域应用观点和考虑巷道轴向空间性的三维地应力空间分解方法。按上述方法,通过数值模拟研究发现,考虑倾斜层理时发生岩爆的位置主要在右帮底部。这与马路坪矿现场观测的破坏结果较吻合。区域空间分解法的岩爆预测结果比线性拟合回归法更接近实际。  相似文献   

16.
杨栋  李海波  夏祥  罗超文  李卫兵 《岩土力学》2013,34(Z2):311-317
为预估和控制爆破荷载作用下围岩损伤范围,在赣龙铁路梅花山隧道工程现场进行岩体声波测试,得到围岩的损伤范围。根据爆破荷载作用下岩体损伤发展规律,采用基于概率形式的损伤变量定义,运用三维有限差分软件对不同地应力状态下爆破产生的围岩损伤范围进行数值模拟,并与现场岩体声波测试结果进行比较。计算结果表明,数值计算与实测结果有较好的一致性,随着地应力大小增大,围岩损伤范围呈现先减小后增大的趋势,且增大幅度较大,地应力较高时,局部部位如顶板、底板损伤更为明显,说明地应力大小对围岩损伤分布有着显著影响;随着侧压力系数增大,损伤范围先减小后增大,但增速逐渐减小。所得到的结论可为高地应力下隧道稳定性分析和支护设计提供依据。  相似文献   

17.
地应力对硬脆性岩体稳定性具有极为重要作用,已有研究主要集中于脆性破坏方式及其是否发生的预测上,而对地应力、洞形等因素与脆性破坏深度间关系的研究较为少见。基于硬脆性岩体脆性破坏准则,利用Examine2D软件,分析不同地应力环境及洞形时围岩脆性破坏深度d_f变化情况。结果表明:最小主应力量值较低时,破坏深度d_f与主应力比k近似为直线关系,较高时则为非线性增长;随着k值增加,屈服范围逐渐偏离最小主应力方向45°夹角发展;洞室断面长宽相近时,主应力方向较主应力量值对d_f的影响小,相同应力量值不同主应力方向,破坏位置不同,深度变化较小。洞形不同应力集中系数不同,选择长短轴长度之比与应力比k相接近的椭圆形谐洞,可有效降低破坏深度。  相似文献   

18.
隧道顶部岩溶对围岩稳定性影响的数值分析   总被引:12,自引:1,他引:11  
以朝东岩隧道为背景,运用二维弹塑性分析研究了隧道顶部不同大小、不同距离的溶洞对隧道围岩稳定性的影响。研究结果表明:隧道顶部溶洞随距离的增大及围岩稳定性增强,距离与隧道开挖引起的释放位移之间存在明显的相关关系,影响的分界线大约为溶洞直径的2~3倍;在拱顶附近的周边释放位移与溶洞的大小成反比,而在隧道侧壁及底部的释放位移与溶洞的尺寸成正比;并详细地分析了应力场及塑性区的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号