首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Polar Science》2014,8(2):96-113
Understanding geocryological characteristics of frozen sediment, such as cryostratigraphy, ice content, and stable isotope ratio of ground ice, is essential to predicting consequences of projected permafrost thaw in response to global warming. These characteristics determine thermokarst extent and controls hydrological regime—and hence vegetation growth—especially in areas of high latitude; it also yields knowledge about the history of changes in the hydrological regime. To obtain these fundamental data, we sampled and analyzed unfrozen and frozen surficial sediments from 18 boreholes down to 1–2.3 m depth at five sites near Chokurdakh, Russia. Profiles of volumetric ice content in upper permafrost excluding wedge ice volume showed large variation, ranging from 40 to 96%, with an average of 75%. This large amount of ground ice was in the form of ice lenses or veins forming well-developed cryostructures, mainly due to freezing of frost-susceptible sediment under water-saturated condition. Our analysis of geocryological characteristics in frozen ground including ice content, cryostratigraphy, soil mechanical characteristics, organic matter content and components, and water stable isotope ratio provided information to reconstruct terrestrial paleo-environments and to estimate the influence of recent maximum thaw depth, microtopography, and flooding upon permafrost development in permafrost regions of NE Russia.  相似文献   

2.
Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954~1962,were chosen to better understand the impacts of highway construction on warm permafrost.Both the thawing of permafrost and seasonal frost action impacted on road surface stability for about 6 years until the maximum summer thaw reached about 3 m in depth.Seasonal frost action caused most of the ensuing stability problems.Unusually warm summers and the lengths of time required to re-freeze the active layer were far more important than the average annual air temperatures in determining the temperatures of the underlying shallow permafrost,or the development of taliks.The hypothesized climate warming would slightly and gradually deepen the active layer and the developed under-lying talik,but its effect would be obscured by unusually warm summers,by warmer than usual winters,and by the vari-able lengths of time of the zero curtains.At least one period of climate mini-cooling in the deeper permafrost during the early 20th century was noted.  相似文献   

3.
Chironomid, pollen, and rhizopod records from a permafrost sequence at Bol’shoy Lyakhovsky Island (New Siberian Archipelago) document the development of a thermokarst palaeo-lake and environmental conditions in the region during the last Interglacial (MIS 5e). Open Poaceae and Artemisia associations dominated vegetation at the beginning of the interglacial period. Rare shrub thickets (Salix, Betula nana, Alnus fruticosa) grew in more protected and wetter places as well. Saalian ice wedges started to melt during this time, resulting in the formation of an initial thermokarst water body. The high percentage of semi-aquatic chironomids suggests that a peatland-pool initially existed at the site. A distinct decrease in semi-aquatic chironomid taxa and an increase in lacustrine ones point to a gradual pooling of water in the basin, which could in turn induce thermokarst and create a permanent pond during the subsequent period. The highest relative abundance of Chironomus and Procladius reflects unfrozen water remaining under the ice throughout the ice-covered period during the later stage of palaeo-lake development. The chironomid record points to three successive stages during the history of the lake: (1) a peatland pool; (2) a pond (i.e., shallower than the maximum ice-cover thickness); and (3) a shallow lake (i.e., deeper than the maximum ice-cover thickness). The trend of palaeo-lake development indicates that intensive thermokarst processes occurred in the region during the last Interglacial. Shrub tundra communities with Alnus fruticosa and Betula nana dominated the vegetation during the interglacial optimum. The climate was moister and warmer than present. The results of this study suggest that quantitative chironomid-based temperature reconstructions from Arctic thermokarst ponds/lakes may be problematic due to other key environmental factors, such as prolonged periods of winter anoxia and local hydrological/geomorphological processes, controlling the chironomid assemblages.  相似文献   

4.
长江源多年冻土区热融湖塘的形成对土壤沙化过程的影响   总被引:1,自引:0,他引:1  
选择长江源区五道梁为研究区域,以典型发育的热融湖塘为研究对象,运用激光粒度仪测得土壤粒径分布,并结合分形模型对高寒草甸土壤颗粒分布与水文过程进行研究。结果表明:热融湖塘的形成加快了长江源区高寒草甸土壤沙质化的进程,随着其影响程度的加剧,黏粒、粉粒含量逐渐减小,砂粒含量逐渐增大,同时土壤颗粒体积分形维数也逐渐减小,并与黏粒、粉粒呈显著正相关,与砂粒含量呈显著负相关,土壤颗粒体积分形维数可代替土壤不同粒径颗粒组成表征土壤沙质化的进程。此外,在热融湖塘影响下的土壤水文过程的改变,是加快土壤沙质化的重要因素之一。  相似文献   

5.
A small lake on top of Rundfjeld, central Ellesmere Island, at an elevation of approximately 830 m, is frozen to the bottom, and the thickness of lake ice present is at least 5.45 m. Under present climatic conditions the lake does not thaw to the bottom, even during the warmest summers; i.e., 3 to 4 m of ice still floored the deepest part of the lake in mid-August 1987. A radiocarbon age determination via accelerator mass spectrometry (AMS) on a sample of the filamentous green alga Mougeotia sp., recovered from the lake ice at a depth below 4 m, gave 5730±70 BP (TO-530). The date indicates that the lake was probably completely open for an unspecified period of time during the warmest part of the Hypsithermal Interval. This situation is in agreement with data derived from a variety of other sources in Ellesmere Island and adjacent Greenland.  相似文献   

6.
Extensive parts of Arctic permafrost-dominated lowlands were affected by large-scale permafrost degradation, mainly through Holocene thermokarst activity. The effect of thermokarst is nowadays observed in most periglacial lowlands of the Arctic. Since permafrost degradation is a consequence as well as a significant factor of global climate change, it is necessary to develop efficient methods for the quantification of its past and current magnitude. We developed a procedure for the quantification of periglacial lowland terrain types with a focus on degradation features and applied it to the Cape Mamontov Klyk area in the western Laptev Sea region. Our terrain classification approach was based on a combination of geospatial datasets, including a supervised maximum likelihood classification applied to Landsat-7 ETM+ data and digital elevation data. Thirteen final terrain surface classes were extracted and subsequently characterized in terms of relevance to thermokarst and degradation of ice-rich deposits. 78% of the investigated area was estimated to be affected by permafrost degradation. The overall classification accuracy was 79%. Thermokarst did not develop evenly on the coastal plain, as indicated by the increasingly dense coverage of thermokarst-related areas from south to north. This regionally focused procedure can be extended to other areas to provide the highly detailed periglacial terrain mapping capabilities currently lacking in global-scale permafrost datasets.  相似文献   

7.
Fifty active-layer detachment failures triggered after forest fire in the discontinuous permafrost zone (central Mackenzie Valley, 65° N.) are compared to several hundred others caused by summer meteorological triggers in continuous permafrost (Fosheim Peninsula, Ellesmere Island, 80°N). Most failures fall into compact or elongated morphological categories. The compact type occur next to stream channels and have little internal disturbance of the displaced block, whereas the elongated types can develop on any part of the slope and exhibit greater internal deformation. Frequency distributions of length-to-width and length-to-depth ratios are similar at all sites. Positive pore pressures, expected theoretically, were measured in the field at the base of the thawing layer. Effective stress analysis could predict the instability of slopes in both areas, providing cohesion across the thaw plane was set to zero and/or residual strength parameters were employed. The location of the shear planes or zones in relation to the permafrost table and the degree of post-failure secondary movements (including headwall recession and thermokarst development within the failure track) differed between the localities, reflecting dissimilarity in the environmental triggers and in the degree of ground thermal disturbance.  相似文献   

8.
The complete life cycle of a permafrost mound is reconstructed from its growth until its degradation. The study site is a lithalsa, which is the subject of a long-term monitoring that includes geocryological observations, measurements of permafrost properties on cores, ground temperature measurements, and observations of landform changes. The landform likely grew as a palsa under cold climatic conditions in the past. The peat cover was subsequently eroded. Early stages of degradation are witnessed since 2003 as a new thermokarst pond is starting to form though mound collapse. Settlement of the structure has been observed, and a rim ridge has begun to form. Ultimately, the lithalsa shall disappear and be replaced by a circular thermokarst pond surrounded by a rampart, similar to many other ones in the study area. The monitoring of the thermal regime of the lithalsa illustrates the pattern of internal warming and points to the causes of its degradation.  相似文献   

9.
Permafrost in peatlands of subarctic Sweden is presently thawing at accelerated rates, which raises questions about the destiny of stored carbon and nutrients and impacts on adjacent freshwater ecosystems. In this study we use peat and lake sediment records from the Stordalen palsa mire in northern Sweden to address the late Holocene (5,000 cal BP-present) development of the mire as well as related changes in carbon and nutrient cycling. Formation, sediment accumulation and biogeochemistry of two studied lakes are suggested to be largely controlled by the development of the mire and its permafrost dynamics. Peat inception took place at ca. 4,700 cal BP as a result of terrestrialisation. Onset of organic sedimentation in the adjacent lakes occurred at ca. 3,400 and 2,650 cal BP in response to mire expansion and permafrost aggradation, respectively. Mire erosion, possibly due to permafrost decay, led to re-deposition of peat into one of the lakes after ca. 2,100 cal BP, and stimulated primary productivity in the other lake at ca. 1,900–1,800 cal BP. Carbonate precipitation appears to have been suppressed when acidic poor fen and bog (palsa) communities dominated the catchment mire, and permafrost-induced changes in hydrology may further have affected the inflow of alkaline water from the catchment. Elevated contents of biogenic silica and diatom pigments in lake sediments during periods of poor fen and bog expansion further indicate that terrestrial vegetation influenced the amount of nutrients entering the lake. Increased productivity in the lake likely caused bottom-water anoxia in the downstream lake and led to recycling of sediment phosphorous, bringing the lake into a state of self-sustained eutrophication during two centuries preceding the onset of twentieth century permafrost thaw. Our results give insight into nutrient and permafrost dynamics in a subarctic wetland and imply that continued permafrost decay and related vegetation changes towards minerotrophy may increase carbon and nutrient storage of mire deposits and reduce nutrient fluxes in runoff. Rapid permafrost degradation may on the other hand lead to widespread mire erosion and to relatively short periods of significantly increased nutrient loading in adjacent lakes.  相似文献   

10.
Richards Island, Northwest Territories, Canada, is characterized by thermokarst lakes which record Holocene limnological change. This study is the first report of thecamoebian assemblages and continuous annual lake water temperatures from these Arctic lakes. Ecological environments on Richards Island are influenced by a climatic gradient resulting from the contrasting influences of the cold Beaufort Sea to the north and the warm waters of the Mackenzie Delta to the east and west. This climatic gradient in turn influences modern thecamoebian assemblages, and is an indication of the complexity involved in interpreting past conditions from core material in this area.Population abundance and species diversity of thecamoebian assemblages on Richards Island are not significantly different from those reported from temperate and semi-tropical latitudes. However, certain assemblage characteristics, such as large and coarse agglutinated tests, dominance of assemblages by one or two species and low morphological variation are interpreted to be diagnostic of Arctic conditions. Thecamoebian assemblages in core material from the area indicate that the local paleolimnological conditions may have changed within the last 3 ka, and this is unrecorded in previously reported pollen data.Paleoenvironmental interpretations in a permafrost landscape have to take into account morphological instability of thermokarst lakes, which can be the cause of paleolimnological and consequently faunal change. In this area ecosystem development is clearly related to geomorphology and local climatic effects and is not exclusively controlled by regional climate change.  相似文献   

11.
Human-induced climatic warming will have major impacts on permafrost, which presently underlies half of Canada's land mass. The adaptation of the northern environment and its physical processes to the altered climate may be contemporaneous or may lag behind climatic change. The extent of permafrost will diminish, accompanied by modifications of the land surface through thermokarst or mass wasting. Streamflow regimes, sediment transport, coastal flooding and erosion will be affected. The magnitude of most components of the water balance will be altered. More research is needed to understand how the permafrost environment behaves during the transient phase, and the problem of permafrost adaptation should be addressed holistically. [Key words: climatic change, frozen ground, ground ice, hydrology, permafrost, periglacial geomorphology, water balance.]  相似文献   

12.
龚婷婷  高冰  吉子晨  曹慧宇  张蕴灵 《地理科学》2022,42(10):1848-1856
基于MODIS温度数据,采用TTOP模型和Stefan公式模拟了青藏高原地区的冻土分布并计算了活动层厚度,并与地面观测结果进行了对比。结果表明:2003—2019年青藏高原多年冻土面积为1.01×106 km2;多年冻土活动层厚度区域平均值为1.79 m, 活动层厚度区域平均的变化率为3.67 cm/10a,且草甸地区的变化率明显大于草原地区,5100~5300 m高程带的活动层厚度变化速率最大。  相似文献   

13.
Due to a series of linear projects built along National Highway 214, the second "Permafrost Engineering Corridor" on the Qinghai-Tibet Plateau has formed. In this paper, by overcoming the problems of data decentralization and standard inconsistency, permafrost characteristics and changes along the engineering corridor are systematically summarized based on the survey and monitoring data. The results show that: 1) Being controlled by elevation, the permafrost is distributed in flake discontinuity with mountains as the center along the line. The total length of the road section in permafrost regions is 365 km, of which the total length of the permafrost section of National Highway 214 is 216.7 km, and the total length of the permafrost section of Gong-Yu Expressway is 197.3 km. The mean annual ground temperature (MAGT) is higher than -1.5 °C, and permafrost with MAGT lower than -1.5 °C is only distributed in the sections at Bayan Har Mountain and E'la Mountain. There are obvious differences in the distribution of ground ice in the different sections along the engineering corridor. The sections with high ice content are mainly located in Zuimatan, Duogerong Plain and the top of north and south slope of Bayan Har Mountain. The permafrost thickness is controlled by the ground temperature, and permafrost thickness increases with the decrease of the ground temperature, with the change rate of about 37 m/°C. 2) Local factors (topography, landform, vegetation and lithology) affect the degradation process of permafrost, and then affect the distribution, ground temperature, thickness and ice content of permafrost. Asphalt pavement has greatly changed the heat exchange balance of the original ground, resulting in serious degradation of the permafrost. Due to the influence of roadbed direction trend, the phenomenon of shady-sunny slope is very significant in most sections along the line. The warming range of permafrost under the roadbed is gradually smaller with the increase of depth, so the thawing settlement of the shallow section with high ice-content permafrost is more significant.  相似文献   

14.
In the last several decades, the underlying surface conditions on the Qinghai-Tibet Plateau have changed dramatically, causing permafrost degradation due to climate change and human activities. This change severely influenced the cold regions environment and engineering infrastructure built above permafrost. Permafrost is a product of the interaction between the atmosphere and the ground. The formation and change of permafrost are determined by the energy exchange between earth and atmosphere system. Fieldwork was performed in order to learn how land surface change influenced the thermal regime in permafrost regions. In this article, the field data observed in the Fenghuo Mountain regions was used to analyze the thermal conditions under different underlying surfaces on the Qinghai-Tibet Plateau. Results show that underlying surface change may alter the primary energy balance and the thermal conditions of permafrost. The thermal flux in the permafrost regions is also changed, resulting in rising upper soil temperature and thickening active layer. Vegetation could prevent solar radiation from entering the ground, cooling the ground in the warm season. Also, vegetation has heat insulation and heat preservation functions related to the ground surface and may keep the permafrost stable. Plots covered with black plastic film have higher temperatures compared with plots covered by natural vegetation. The reason is that black plastic film has a low albedo, which could increase the absorbed solar radiation, and also decrease evapotranspiration. The "greenhouse effect" of transparent plastic film might effectively reduce the emission of long-wave radiation from the surface, decreasing heat loss from the earth's surface, and prominently increasing ground surface temperature.  相似文献   

15.
青藏高原地区冻土正呈退化趋势,除气候变化、人为活动的影响外,沙漠化也被认为是冻土退化的原因之一,但仍存在较大争议。基于不饱和土渗流和热传导理论,结合CoLM和Coup-Model模型,初步构建了积沙-冻土-水热概念模型和耦合模型。并在两模型的基础上,讨论了沙层反射率、积沙体热容量、积沙体厚度和沙的传热率等参数对下伏冻土的热影响过程。结果表明,沙层的反射率、地面发射率均高于天然地表,沙层接受的热量较天然地表偏少;积沙地表下的沙层和活动层能截留更多热量,使冻结层获得的热量相对减少;沙的导热性较差,导致积沙地表下地温变化出现延迟,从而延缓冻土退化;同时,积沙无论厚薄,都将起到延缓冻土退化的作用。因而,沙漠化对青藏高原冻土退化的影响可能较小,但全面揭示沙漠化对冻土的影响仍需深入研究。  相似文献   

16.
In the offshore part of Beaufort–Mackenzie Basin depth of methane hydrate stability reaches more than 1.5 km. However, there are areas in the western part of the basin where there are no conditions of methane hydrate stability. Construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost in the offshore area, shows that these zones can reach 1200 m and 900 m, respectively. Depth to the base of ice-bearing relict permafrost under the sea (depth of the –1°C isotherm-ice-bearing permafrost base) and regional variations of geothermal gradient are the main controlling factors. Hydrostatic pressures in the upper 1500 m are the rule. History of methane hydrate stability zone is related mainly to the history of permafrost and it reached maximum depth in early Holocene. More recently, the permafrost and hydrate zone is diminishing because of sea transgression. Reevaluation of the location of possible gas hydrate occurrences is done from the analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone. In the offshore Beaufort–Mackenzie Basin, methane hydrate occurs in 21 wells. Nine of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate-stability zone described in this study. Interpretation of geological cross sections and maps of geological sequences reveals that hydrates are occurring in the Iperk–Kugmallit sequence. Hydrate–gas contact zones, however, are possible in numerous situations. As there are no significant geological seals in the deeper part of the offshore basin (all hydrates are within Iperk), it is suggested that overlying permafrost and hydrate stability zone acted as the only trap for upward migrating gas during the last tens of thousand of years (i.e., Sangamonian to Holocene).  相似文献   

17.
Glacial lakes are not only the important refresh water resources in alpine region, but also act as a trigger of many glacial hazards such as glacial lake outburst flood (GLOF) and debris flow. Therefore, glacial lakes play an important role on the cryosphere, climate change and alpine hazards. In this paper, the issues of glacial lake were systematically discussed, then from the view of glacial lake inventory and glacial lake hazards study, the glacial lake was defined as natural water mainly supplied by modern glacial meltwater or formed in glacier moraine’s depression. Furthermore, a complete classification system of glacial lake was proposed based on its formation mechanism, topographic feature and geographical position. Glacial lakes were classified as 6 classes and 8 subclasses, i.e., glacial erosion lake (including cirque lake, glacial valley lake and other glacial erosion lake), moraine-dammed lake (including end moraine-dammed lake, lateral moraine-dammed lake and moraine thaw lake), ice-blocked lake (including advancing glacier-blocked lake and other glacier-blocked lake), supraglacial lake, subglacial lake and other glacial lake. Meanwhile, some corresponding features exhibiting on remote sensing image and quantitative indices for identifying different glacial lake types were proposed in order to build a universal and operational classification system of glacial lake.  相似文献   

18.
Glacial lakes are not only the important refresh water resources in alpine region, but also act as a trigger of many glacial hazards such as glacial lake outburst flood(GLOF) and debris flow. Therefore, glacial lakes play an important role on the cryosphere, climate change and alpine hazards. In this paper, the issues of glacial lake were systematically discussed, then from the view of glacial lake inventory and glacial lake hazards study, the glacial lake was defined as natural water mainly supplied by modern glacial meltwater or formed in glacier moraine's depression. Furthermore, a complete classification system of glacial lake was proposed based on its formation mechanism, topographic feature and geographical position. Glacial lakes were classified as 6 classes and 8 subclasses, i.e., glacial erosion lake(including cirque lake, glacial valley lake and other glacial erosion lake), moraine-dammed lake(including end moraine-dammed lake, lateral moraine-dammed lake and moraine thaw lake), ice-blocked lake(including advancing glacier-blocked lake and other glacier-blocked lake), supraglacial lake, subglacial lake and other glacial lake. Meanwhile, some corresponding features exhibiting on remote sensing image and quantitative indices for identifying different glacial lake types were proposed in order to build a universal and operational classification system of glacial lake.  相似文献   

19.
An automatic meteorological station has been operating at the Arctic Station (69°15'N, 53°31'W) in West Greenland since 1990. This paper summarises meteorological parameters during 1998, including snow cover, ground temperatures and active layer development, and presents comments on the local permafrost thickness.

Abstract

Active layer monitoring in Greenland was started in 1996 and 1997, and forms part of the Circumpolar Active Layer Monitoring (CALM) Network of the International Permafrost Association (IPA). The results of the first years of this monitoring of thaw progression and maximum active layer thickness in two Greenlandic permafrost areas are presented. Two sites are in the continuous permafrost zone at Zackenberg in NE Greenland (74 °N), and one at Disko Island in W Greenland (69 °N), at the border between discontinuous and continuous permafrost.

The data collected at Zackenberg demonstrate interannual variation in the timing of thaw progression in the monitoring grid holding a seasonal snowpatch, while there is less variation in the horizontal grid without a snowpatch. The maximum active layer thickness for the two Zackenberg grids is more or less consistent for the first three years with averages from 58 to 66 cm in mid and late August. At Disko the active layer reached 71 cm in mid August 1998. Spatially the distribution of the maximum, annual active layer thickness within the grids is concordant.  相似文献   

20.
The object of this study is to test the assumption that cryogenic weathering (here understood as in‐situ disintegration of rock under cold‐climate conditions including ice as a weathering agent) preferentially breaks up quartz grains. We apply the results of laboratory tests to a Quaternary sediment record. The combination of silt production, relative quartz enrichment in the silt fraction, and quartz grain micromorphology is traced in a multi‐100‐kyr lake sediment archive as indicator data for cryogenic weathering. Constant cryogenic weathering conditions are inferred for at least the last 220 000 years from a lake sediment core of El'gygytgyn Crater, northeast Russia. This is the longest continuous terrestrial archive currently known for the continental Arctic. Quartz enrichment in the fines evolves from seasonal freeze–thaw weathering as demonstrated in laboratory testing where over 100 freeze and thaw cycles crack quartz grains preferentially over feldspar. Microscopic grain features demonstrate that freeze–thaw cycling probably disrupts quartz grains along mineral impurities such as bubble trails, gas–liquid inclusions, or mineralogical sub‐grain boundaries. Single‐grain micromorphology (e.g. angular outlines, sharp edges, microcracks, brittle surfaces) illustrates how quartz becomes fragmented due to cryogenic cracking of the grains. The single‐grain features stemming from the weathering dynamics are preserved even after a grain is transported off site (i.e. in mobile slope material, in seasonal river run‐off, into a lake basin) and may serve as first‐order proxy data for permafrost conditions in Quaternary records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号