首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with group concentrations c 1=[NO]+[NO2]+[HNO3], c 2=[NO2]+[O3]+3/2·[HNO3], and c 3=[NO]–[O3]–1/2·[HNO3]. The fluxes of the individual species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (decoding method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989).  相似文献   

2.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values.  相似文献   

3.
A simple kinetic mechanism of nitrate radicals uptake on dry sea-salt NaCl, NaBr surfaces is proposed. The mechanism includes adsorption/desorption equilibrium and unimolecular decomposition of the adsorbed complex: NO3(g) + NaX(s) (NO3-NaX)(s); (NO3-NaX)(s) NaNO3 + X(s) Two techniques were used: the matrix isolation ESR and mass spectrometry. The uptake coefficient () is found to be dependent on exposure time of salt to NO3 for raw coating. The initial (t0) is higher than the observable steady-state obs. At room temperature obs is independent of [NO3] at low [NO3] = 3 × 109 - 1011 cm-3, but it is inversely proportional to [NO3] at concentrations higher than 1012 cm-3. At temperatures above 100 °C, obs becomes independent of [NO3] in a wider range of [NO3]. An increased number of dislocations is supposed to exist in the case of raw coating. Due to a wide spread of the surface sites binding energy with the ionic lattice near dislocations, the part of surface complexes has lower binding energy and "burns" more rapidly. That burning determines the transition from (t0) down to obs.The kinetic parameters and elementary rate coefficients are obtained. The recommended for low atmospheric NO3 concentration are in the range of 0.002 ± 0.04 for NaCl and 0.1-0.3 for NaBr depending on a mechanism of the (t) relaxation.  相似文献   

4.
Tropospheric photodissociation rate coefficients (J values) were calculated for NO2, O3, HNO2, CH2O, and CH3CHO using high spectral resolution (0.1 mm wavelength increments), and compared to the J values obtained with numerically degraded resolution (=1, 2, 4, 6, 8, and 10 nm, and several commonly used nonuniform grids). Depending on the molecule, substantial errors can be introduced by the larger increments. Thus for =10 nm, errors are less than 1% for NO2, less than 2% for HNO2, +6.5% to -16% for CH2O, -6.9% to +24% for CH3CHO, and -24% to +110% for O3. The errors for CH2O arise from the fine structure of its absorption spectrum, and are prevalently negative (underestimate of J). The errors for O3, and to a lesser extent for CH3CHO, arise mainly from under-resolving the overlap of the molecular action spectrum and the tropospheric actinic flux in the wavelength region of stratospheric ozone attenuation. The sign of those errors depends on whether the actinic flux is averaged onto the grid before or after the radiative transfer calculation. In all cases studied, grids with 2 nm produced errors no larger than 5%.  相似文献   

5.
Gaseous nitrogen compounds (NO x , NO y , NH3, N2O) were measured at ground level in smoke plumes of prescribed savanna fires in Lamto, in the southern Ivory Coast, during the FOS/DECAFE experiment in January 1991. During the flaming phase, the linear regression between [NO x ] and [CO2] (differences in concentration between smoke plumes and atmosheric background) results volumic emission ratio [NO x ]/[CO2]=1.37×10–3 with only slight differences between heading and backing fires. Nearly 90% of the nitrogen oxides are emitted as NO. Average emission ratios of other compounds are: 1.91, 0.047, and 0.145×10–3 for NO y , NH3 and N2O, respectively. The emission ratios obtained during this field experiment are compred with corresponding values measured during former experiments with the same plant species in combustion chambers. An accurate determination of both the biomass actually burned and of the plant nitrogen content, allows an assessment of emission fluxes of N-compounds from Guinean savanna burns. Preliminary results dealing with the influence of fire on biogenic emissions from soils are also reported.  相似文献   

6.
Upto 13% of -pinene and 3-carene had reacted after 213 s in this dark experimental set-up, where O3, NO and NO2 were mixed with terpenes at different relative humidities (RHs). The different experiments were planned according to an experimental design, where O3, NO2, NO, RH and reaction time were varied between high and low settings (25 and 75 ppb, 15 and 42%, 44 and 213 s). An increased amount of -pinene and 3-carene reacted in the chamber was observed, when the level of O3, NO and reaction time was increased and RH was decreased. In the study, it was found that different interactions affected the amount of terpene reacted as well. These interactions were between O3 and NO, O3 and reaction time, NO and RH, and between NO and reaction time.  相似文献   

7.
The role of alkaline mineral aerosol in controlling HNO3 partitioning between gas and aerosol phases is explored using a comprehensive, process oriented three-dimensional model. Simulation results for March 1994, a period from the PEM West B experiment, are presented. It is found that in the dust impacted regions of the boundary layer and free troposphere, more than 50% of HNO3 ispartitioned onto dust particles; while 1050% of HNO3 in the boundarylayer and 10 30% of HNO3 in the free troposphere is partitionedonto sea-salt particles. This higher capacity of mineral dust to uptake HNO3 is due to the fact that carbonate in the dust particles is more volatile (thus easily replaced by nitrate) than chloride in the sea-salt particles. When this process of nitric acid partitioning onto alkaline particles is included in the analysis, model predicted HNO3-to-NOx ratios are much closer to observed valuesthat typically range between 1 and 9.  相似文献   

8.
The formation yields of nine carbonyl products are reported from the gas-phase OH radical-initiated reactions (in the presence of NO x ) and the O3 reactions with seven monoterpenes. The products were identified using GC/MS and GC-FTIR and quantified by GC-FID analyses of samples collected on Tenax solid adsorbent cartridges. The identities of products from camphene, limonene and -pinene were confirmed by comparison with authentic standards. Sufficient quantities of products from the 3-carene, limonene, -pinene, sabinene and terpinolene reactions were isolated to allow structural confirmation by proton NMR spectroscopy. The measured total carbonyl formation yields ranged from non-detectable for the OH radical reaction with camphene and the O3 reactions with 3-carene and limonene to 0.5 for the OH radical reaction with limonene and the O3 reaction with sabinene.  相似文献   

9.
The kinetics and mechanism of the reactionNO3+CH2=C(CH3)–CH=CH2productswere studied in two laboratories at 298 K in the pressure range 0.7–3 torr using the discharge-flow mass-spectrometric method. The rate constant obtained under pseudo-first-order conditions with excess of either NO3 or isoprene was: k 1=(7.8±0.6)×10–13 cm3 molecule–1 s–1. The product analysis indicated that the primary addition of NO3 occurred on both -bonds of the isprene molecule.  相似文献   

10.
A liquid jet of 90 m diameter and variable length has been utilized to determine absorption rates and, hence, mass accommodation coefficients , of atmospheric trace gases. The compounds investigated are HCl (0.01), HNO3 (0.01), N2O5 (0.005), peroxyacetyl nitrate (>0.001), and HONO (0.005). It is concluded that the absorption of these trace gases by liquid atmospheric water is not significantly retarded by interfacial mass transport. The strengths and limitations of the liquid jet technique for measuring mass accommodation coefficients are explored.  相似文献   

11.
An experimental investigation of the simultaneous absorption of NH3 and SO2 from the ambient atmosphere by freely falling water drops has been carried out in the Mainz vertical wind tunnel. The experimental results were found to be in good agreement with the results derived from computations with the Kronig-Brink convective diffusion model and also with a model which assumes a drop to be well mixed at all times. Encouraged by this agreement, these computation schemes for the uptake of gas by single drops where incorporated in a pollution washout model with realistic SO2, NH3 and CO2 gas profiles. This model allows an entire raindrop size distribution to fall through a gas layer. The results of this plume-model show that the SO2 uptake is strongly dependent on the NH3 concentration in the atmosphere and on the rainrate. We also find that the small drops contribute more towards the washout of these gases. In the case of simultaneous presence of NH3 and SO2, desorption of these gases is negligible.  相似文献   

12.
A Comparative Analysis of Transpiration and Bare Soil Evaporation   总被引:4,自引:0,他引:4  
Transpiration Ev and bare soil evaporation Eb processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content . For a homogeneous areal distribution of we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of are simulated by Monte-Carlo runs assuming normal distributions of .The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theEv()-Eb() differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation Av() and bare soil Ab() surfaces differ much less than the Ev() and Eb() curves. The results suggest that Ev is much more non-linearly related to environmental conditions than Eb. Both Ev and Eb depend on the distribution of , the wetness regime and the parameterization used. With the parameterizations, Eb showed greater variations than Ev. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.  相似文献   

13.
Carbonyl sulfide emissions from biomass burning have been studied during field experiments conducted both in an African savanna area (Ivory Coast) and rice fields, central highland pine forest and savanna areas in Viet-Nam. During these experiments CO2, CO and C2H2 or CH4 have also been also monitored. COS values range from 0.6 ppbv outside the fires to 73 ppbv in the plumes. Significant correlations have been observed between concentrations of COS and CO (R 2=0.92,n=25) and COS and C2H2 (R 2=0.79,n=26) indicating a COS production during the smoldering combustion. COS/CO2 emission factors (COS/CO2) during field experiments ranged from 1.2 to 61×10–6 (11.4×10–6 mean value). COS emission by biomass burning was estimated to be up to 0.05 Tg S/yr in tropics and up to 0.07 Tg S/yr on a global basis, contributing thus about 10% to the global COS flux. Based on the S/C ratio measured in the dry plant biomass and the COS/CO2 emission factor, COS can account for only about 7% of the sulfur emitted in the atmosphere by biomass burning.  相似文献   

14.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

15.
The NO3 radical initiated oxidation of cyclopentene, cyclohexene and 1-methyl-cyclohexene has been studied. The products formed in an N2O5-NO2-N2-O2-cycloalkene-static reactor system, at 0.1 MPa and 296 K, were investigated using long path FTIR. The principal products were aldehydes formed via a ring opening process. The reactions also resulted in significant yields of three types of ring retaining nitrooxy-substituted compounds. The average yields of alkyl nitrates from, e.g., reactions with cycloalkene were 25.1% 2-oxo-cyclohexyl nitrate, 22.8% 2-hydroxy-cyclohexyl nitrate and 4.0% 1,2-cyclohexyl dinitrate. The mechanisms involved resembles those proposed for acyclic alkenes. In absence of NO, -oxo and -hydroxy-cycloalkyl nitrates are formed via self reactions of -nitrooxy substituted cycloalkyl peroxy radicals. Estimated branching ratios for the reactants leading to ring retaining products in the presence and in the absence of NO are given and the possible relevance of these reactions for cycloalkenes under tropospheric conditions is discussed.  相似文献   

16.
Since April 1986, measurements of the CO2 concentration in the surface air have been conducted at the Meteorological Research Institure (MRI, 36°04 N, 140°07 E, 25 m above sea level) in Tsukuba, located 50 km northeast of Tokyo, Japan. The CO2 data measured over times between 11:00 Japan Standard Time (JST) and 16:00 JST (C N ) were considered to be representative of the air (within a few ppmv) in the planetary boundary layer. To evaluate the representative CO2 level on a spatial scale larger than that of the C N record, the CO2 data with hour-to-hour variation less than 1 ppmv were selected (C P ). Comparison of these data with those of Ryori (39°02 N, 141°50 E), a continental station operated by the Japan Meteorological Agency, indicates that the C P record provides a representative CO2 level in the air on spatial scales of at least a few hundred kilometers.The C N record allows an investigation of the internanual changes in photosynthesis/respiration against changes in climatological parameters. Within a small temperature anomaly (ca.±1 °C) respiration is sensitive to the temperature change, while photosynthesis is less sensitive. When the temperature anomaly is large, however, photosynthesis and respiration tend to be competitive.  相似文献   

17.
Summary A radiative transfer model has been used to determine the large scale effective 6.6 GHz and 37 GHz optical depths of the vegetation cover. Knowledge of the vegetation optical depth is important for satellite-based large scale soil moisture monitoring using microwave radiometry. The study is based on actual observed large scale surface soil moisture data and observed dual polarization 6.6 and 37 GHz Nimbus/SMMR brightness temperatures over a 3-year period. The derived optical depths have been compared with microwave polarization differences and polarization ratios in both frequencies and with Normalized Difference Vegetation Index (NDVI) values from NOAA/AVHRR. A synergistic approach to derive surface soil emissivity from satellite observed brightness temperatures by inverse modelling is described. This approach improves the relationship between satellite derived surface emissivity and large scale top soil moisture fromR 2=0.45 (no correction for vegetation) toR 2=0.72 (after correction for vegetation). This study also confirms the relationship between the microwave-based MPDI and NDVI earlier described and explained in the literature.List of Symbols f frequency [Hz] - f i(p) fractional absorption at polarizationp - h surface roughness - h h cos2 - H horizontal polarization - n i complex index of refraction - p polarization (H orV) - R s microwave surface reflectivity - T B(p) brightness temperature at polarizationp - T * normalized brightness temperature - T polarization difference (T v-T H) - T s temperature of soil surface - T c temperature of canopy - T max daily maximum air temperature - T min daily minimum air temperature - V vertical polarization - soil moisture distribution factor; also used for the constant to partition the influence of bound and free water components to the dielectric constant of the mixture - empirical complex constant related to soil texture - microwave transmissivity of vegetation (=e ) - * effective transmissivity of vegetation (assuming =0) - microwave emissivity - s emissivity of smooth soil surface - rs emissivity of rough soil surface - vs emissivity of vegetated surface - soil moisture content (% vol.) - K dielectric constant [F·m–1] - K fw dielectric constant of free water [F·m–1] - K ss dielectric constant of soil solids [F·m–1] - K m dielectric constant of mixture [F·m–1] - K o permittivity of free space [8.854·10–12 F·m–1] - high frequency limit ofK wf [F·m–1] - wavelength [m] - incidence angle [degrees from nadir] - polarization ratio (T H/T V) - b soil bulk density [gr·cm–3] - s soil particle density [gr·cm–3] - R surface reflectivity in red portion of spectrum - NIR surface reflectivity in near infrared portion of spectrum - eff effective conductivity of soil extract [mS·cm–1] - vegetation optical depth - 6.6 vegetation optical depth at 6.6 GHz - 37 vegetation optical depth at 37 GHz - * effective vegetation optical depth (assuming =0) - single scattering albedo of vegetation With 12 Figures  相似文献   

18.
The yields of products have been calculated for the reactions of hydroxyl radicals and ozone with 19 of the two-through-six carbon anthropogenic alkenes. Based on their rate of reaction, mechanisms of reactions and the ambient air distribution for these alkenes their seasonal ambient air yields have been estimated.Aldehydes predominate as products irrespective of season, with smaller yields of several ketones. Other minor products include carboxylic acids, carbon monoxide, carbon dioxide, and alkenes. About a two-fold increase is estimated in the yields of hot biradicals and their products from summer to winter.One sensitivity analysis was made by recomputing yields at a different OH radical to O3 concentration than assumed most likely in the calculations discussed above. In addition, the sensitivity of product yields to an estimated range of seasonally averaged sunset-to-sunrise NO3 radical concentrations was calculated. The effects of free radical reactions are discussed, but these are believed to make a relatively minor contribution within the NO x -rich atmospheres that contain anthropogenic alkenes.The uncertainties in product yields associated with the range of NO3 radical concentrations assumed present is relatively small for aldehydes, as is the decrease in yield of the one carbon hot biradical. Larger uncertainties occur for ketones. Significant decreases in yields occur for larger hot biradicals, especially the branched-chain hot radicals in the presence of NO3 radicals.  相似文献   

19.
Summary The integral aerosol optical depths (k ) at the hour of 08:20 Local Standard Time (LST), are compared with those calculated previously at 11:20 and 14:20 LST, for clear days during summer in Athens over the period 1962–1988. The mean values at 08:20 LST were consistently lower than the values at 11:20 and 14:20 LST. The influence of the vertical wind profile on the values ofk was also investigated. A comparison was made of the wind profiles at 02:00 and 14:00 LST, for days in which the 11:20 and 14:20 LST values ofk were 0.200 andk 0.350, respectively. The corresponding bulk wind shear s was also found for the period 1980–1988. The most significant results occurred with the first category of days. The resultant wind velocities from the surface to the 900 hPa level, in each hour were higher by 2–4 m·s–1 with respect to the corresponding values for the second category. At 02:00 LST the bulk wind shear showed a considerable difference (1.8) between the two categories of days in the surface to 700 hPa layer at 02:00 LST. Finally, the associated weather conditions that appear to initiate a period of low values ofk (k 0.200) at 11:20 and 14:20 LST were examined for the period 1980–1988. Fifteen such cases were identified and it was found that they all occurred after the passage of weak cold fronts.With 6 Figures  相似文献   

20.
Summary During an expedition to the high Andes of Southern Peru in June–July 1977, measurements of direct solar radiation in four spectral bands (0.270–0.530–0.630–0.695–2.900 ) were conducted at six sites in elevations ranging from sea level to 5645 m. These measurements were evaluated in Langley plots to determine total optical depths () and irradiances at the top of the atmosphere. In addition, water vapor optical depths (wv) were calculated from the mean radiosounding over Lima during the expedition, and Rayleigh (ray) and ozone (oz) optical depths were obtained from published tabulations. Subtracting ray, oz, and wv from yielded estimates of aerosol optical depth aer. The components ray and oz decrease from the shorter towards the longer wavelength bands and from the lower towards the higher elevation sites; aer also decreases towards the higher elevations. Particularly pronounced is the decrease of aer and from the lowlands of the Pacific coast to the highlands of the interior, reflecting the effect of a persistent lower-tropospheric inversion and the contrast from the marine boundary layer to the clear atmosphere of the high Andes.With 4 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号