首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
利用2018年1—10月华南3 km区域高分辨率模式08时、20时起报的气温预报和实况资料,采用线性内插法进行站点预报值处理,并从平均均方根误差及预报准确率的角度,检验分析了贵州省72 h预报内逐24 h最高(低)气温预报质量。结果表明,72 h内随着预报时效的增加,预报准确率差异较小;日最低气温预报准确率相对最高气温平均高出20%左右;08时起报的最高(低)气温预报优于20时的。同时发现,最高(低)气温的预报能力在月份上存在明显差异,6—8月预报性能总体优于其它月份;在24~48 h预报中,东北—西南向一带较贵州其它区域展现出更高的预报能力。在9个主要城市站上,最高(低)气温均表现出较高的预报技巧,其中,20时起报的兴义站24 h最低气温准确率100%。通过对2018年7月18日气温预报质量检验,最高(低)气温及35.0℃以上高温事件预报准确率均在80%左右,较好反映了天气实况。因此,华南3 km高分辨率区域模式对贵州气温预报具有较好的参考价值。  相似文献   

2.
文章基于内蒙古精细化格点气象要素预报,采用普通克里格、反距离加权、双线性插值法,优选气温和相对湿度的最优插值方法,制作站点预报并检验。结果表明:(1)对气温和相对湿度应用效果最好的插值法分别是双线性插值法和普通克里格法;(2)08时起报当天气温和相对湿度的预报效果均好于前一日20时起报预报,日最高气温预报准确率最高,为77.83%,预报与实况相关系数达到0.8211,日最低气温、日平均气温及日平均相对湿度相关系数达到0.6以上;(3)高温预报值总体小于实况值,08时预报准确率为70%~93.94%,20时预报准确率为54.55%~93.33%。  相似文献   

3.
利用2014~2015年阿坝州13站共730天08:00和20:00起报的SCMOC温度精细化指导预报资料,对比实况日最高(低)气温,进行预报质量检验。结果表明:日最高(低)气温预报准确率与预报时效成反比,两个时次预报的最低气温准确率高于最高气温,且最低气温预报准确率有明显的季节变化。08:00起报的日最低气温多出现负误差,其余预报最高(低)气温多出现正误差。日最低气温预报绝对误差与海拔高度有关。24h最高(低)气温预报绝对误差>4℃样本分析表明,温度平流、大气稳定度与非绝热过程对温度的影响明显,造成气温偏差的主要原因是降水及冷空气影响范围和强度,冷、暖平流影响偏差,高空槽强度和移动偏差等几方面。  相似文献   

4.
SCMOC温度精细化指导预报在陕西区域的质量检验   总被引:1,自引:0,他引:1  
王丹  高红燕  马磊  王建鹏  杨新 《气象科技》2014,42(5):839-846
利用2012年陕西区域99站共366天北京时间08:00和20:00起报的SCMOC温度精细化指导预报与实况资料的比较,检验分析了定时温度、日最高气温和日最低气温的预报质量。结果表明:陕西区域SCMOC温度精细化指导预报08:00起报的准确率高于20:00起报的,且预报准确率有明显的季节变化,夏、秋季节较高,冬、春季节较低,日最高(低)气温的预报准确率与预报时效成反比。地形高度影响温度预报准确率,二者之间的相关系数通过了显著性检验。08:00起报的48h内逐3h气温多出现负误差,20:00起报的多出现正误差。08:00起报的日最高气温和20:00起报的日最高(低)气温多出现负误差,08:00起报的日最低气温多出现正误差。从对典型天气过程的温度预报质量检验来看,强冷空气影响下的降温天气过程的温度预报难度较大,预报准确率较其他天气类型偏低一些。  相似文献   

5.
精细化预报产品在长沙的应用和温度检验   总被引:1,自引:0,他引:1  
将精细化气象要素预报支撑环境(FUSE)产品经过本地化应用开发,形成对预报员有用的显示和扩展平台,方便预报员随时查看温度、降水预报,了解FUSE产品预报性能,缩短使用FUSE产品的时间,提高预报效率。在此基础上,对长沙、浏阳、宁乡3站2013年5个时效的FUSE温度预报产品进行评分,并对长沙、浏阳2站高温预报误差的主成分进行分析。结果表明:(1)08时起报的长沙、浏阳、宁乡3站72 h高温预报和72 h时段以内低温预报准确率已经接近预报员平均水平,08时起报的高低温预报效果均要优于20时,随着预报时效延长,08时和20时起报的预报准确率均表现出降低趋势;(2)长沙、浏阳、宁乡3站高低温预报准确率都是1月最低,7月最高,20时起报的低温预报准确率下半年总体比上半年高,08时和20时起报的高低温预报逐月检验结果均呈现出2个波峰、3个波谷的特征,波峰出现在3月和7月,波谷出现在1月、4月和9月;(3)长沙、浏阳2站高温预报6月之前预报值偏离实况大,6月之后预报值偏离实况小,其中长沙站6月之前预报值较实况偏低,6月之后预报值较实况偏高、偏低的频次差别不大;浏阳站预报值偏离实况比长沙站大。说明FUSE系统对长沙站的预报比浏阳站更准确。  相似文献   

6.
采用2016—2018年DOGRAFS(沙漠绿洲戈壁区域分析预报系统)的气温、降水逐小时预报资料,在检验的基础上开展释用方法研究,并用2019年资料进行试验测试,结果表明:DOGRAFS气温预报,08时起报的准确率要高于20时起报的;北疆好于南疆,准确率为50%,平均绝对误差为2.5℃,采用最高、最低气温建模方案,预报准确率提高到64%,平均绝对误差为1.9℃,预报的离散度降低。DOGRAFS降水预报,08时起报的T_S评分略高,20时起报的晴雨准确率略高,南疆好于北疆;晴雨预报准确率可达95%,但降水T_S评分仅有20%,空报率超过50%;采用消空订正方案,晴雨预报准确率提高1%,T_S评分提高2%,空报率大大降低,但漏报率较大。释用方案对模式气温预报有较好的提升效果,降水预报仍有较大的改进空间。  相似文献   

7.
辽宁地区ECMWF模式气温预报检验及误差订正研究   总被引:1,自引:0,他引:1  
利用2016—2018年ECMWF细网格模式12—36 h内2 m温度预报产品,选取辽宁地区65个城镇站点观测资料,评估预报产品在不同季节的预报准确率,并按季节分析固定误差订正方法和最优滑动周期订正方法对提高准确率的作用。结果表明:ECMWF模式预报产品对辽宁地区气温预报的准确率表现为,ECMWF模式最高气温冬季预报最优(城镇站点预报准确率为81.5%),最低气温夏季预报最好(城镇站点预报准确率为84.3%);采用最优滑动周期订正后,2016—2018年辽宁地区的最高气温和最低气温准确率较ECMWF模式自身分别提高了19.7%和20.5%,最低气温的预报准确率提高程度优于最高气温;在整个空间分布中,ECMWF模式对辽宁中部平原地区最高(低)气温预报准确率高于东、西部地区,辽宁东北部和西南部以及东南部的长白山余脉影响区域准确率明显低于其他区域。同时,在各季中,最高气温和夏季最低气温的订正预报能力优于其他季节;在地面晴、雨两种特征下,对辽宁地区24 h气温预报进行订正检验表明,该检验结果对辽宁地区最高(低)气温订正有一定补充作用,尤其是冬季降水出现时,最高气温预报补充订正效果最为显著。  相似文献   

8.
《干旱气象》2021,39(4)
利用陕西99个国家气象站2017—2019年日最高(低)气温观测资料,采用一元线性回归和递减平均方法,对GRAPES_Meso、ECMWF和SCMOC的日最高(低)气温预报进行订正,并作对比检验。结果表明,SCMOC、GRAPES_Meso和ECMWF的日最低气温预报准确率较日最高气温偏高,其中SCMOC的日最高和最低气温预报准确率最高,ECMWF次之,GRAPES_Meso最低。一元线性回归和递减平均方法对SCMOC的气温预报订正多为负效果,但对GRAPES_Meso和ECMWF的气温预报订正有明显正效果。订正后ECMWF与订正前SCMOC的预报相比,前者日最高和最低气温的预报准确率偏高。订正后GRAPES_Meso与订正前SCMOC的预报相比,前者日最低气温预报准确率偏低、2018年24 h和2019年24、48 h日最高气温预报准确率偏高。一元线性回归法对模式气温预报的订正能力和稳定性优于递减平均法。  相似文献   

9.
利用2015年大连地区7个主要气象站的地面气温、降水、风向风速和相对湿度观测资料,针对东北区域中尺度数值模式(Weather Research and Forecast,WRF)产品中常规天气要素进行检验分析,了解掌握WRF模式对不同天气要素的预报能力,以期为天气预报业务中WRF模式产品的订正提供参考。结果表明:WRF模式产品的气温预报准确率整体上08时起报的比20时起报的稍好,最低气温预报效果比最高气温稍好,且WRF模式对升温和降温的趋势预报较好,具有一定参考性。WRF模式产品的降水预报准确率相对较高; WRF模式对风向的预报准确率可以达到50%左右,而风速的预报准确率可以达到60%—70%;大雾天气的预报,可以相应参考WRF模式的相对湿度。  相似文献   

10.
利用2016年1月1日—2018年12月31日吉林省381个站的逐日最高气温、最低气温和定时气温的观测数据,对ECMWF高分辨率模式的2 m最高、最低气温和定时气温预报进行检验分析.结果表明,ECMWF模式对吉林省的气温预报与实况存在一定偏差;从空间上看,自西向东气温预报准确率逐渐递减,预报误差逐渐增大;从时间上看,随预报时效的增长,预报准确率逐渐下降.对ECMWF的气温预报进行高度差订正后,模式最高气温24 h、48 h、72 h的预报准确率分别从52%、51%、50%提高至58%、56%、54%;最低气温准确率分别从58%、56%、54%提高至64%、62%、59%;定时气温准确率分别从63%、60%、58%,提高至67%、63%、61%.高度差订正的方法有效提高了模式气温预报的准确率,减小了模式预报误差,提高了模式预报释用能力,订正后的气温预报TS评分得到明显的提高.该方法已应用在吉林省客观预报的订正算法中.  相似文献   

11.
利用毕节市8个国家站02时、14时气温实况数据,分别计算2016-2018年冬季(12月、1月、2月)EC细网格2 m温度预报的准确率、平均绝对误差、绝对误差,检验在升温、平稳、降温3类天气过程中温度预报效果,为模式温度预报订正提供参考依据。结果表明:02时的预报平均准确率比14时高约10%;除赫章站以外,其余站点准确率在60%~80%之间,有一定预报参考意义;3类天气过程中,平稳、降温天气中温度预报效果明显优于升温天气;升温天气过程中02、14时温度预报大多偏低0~4℃,降温天气过程中02时温度预报总体偏低0~4℃,14时偏高0~4℃。  相似文献   

12.
利用山东省内123个国家气象站2017年11月至2018年2月逐时观测地面温度对WRF模式08:00和20:00起报的2 m温度进行检验,评估了预报时效为72 h的逐时温度与日最低(高)温度的预报效果并初步分析了个别站点大值误差成因。结果表明:WRF模式08:00起报2 m温度的准确率要高于20:00起报,白天预报的效果优于夜晚;鲁西北和半岛地区的2 m预报温度的平均绝对误差总体低于鲁中和鲁南地区,全省大部分站点负误差比例高于正误差比例;WRF模式对于日最高温度的预报效果优于日最低温度;模式地形高度误差造成泰山站2 m预报温度正误差较大,基于两种温度梯度方案对泰山站2 m温度进行订正,订正后的平均绝对误差总体下降,利用单一的温度梯度在有的预报时刻出现负的订正效果,利用随预报时刻变化而变化的温度梯度在各预报时刻订正效果更为稳定;泰安站出现焚风时2 m预报温度有较大负误差,这主要是受WRF模式泰山站地形高度误差影响;WRF模式在微山湖区域土地类型与真实土地类型存在差异是薛城站夜间2 m温度负误差较大的重要因素之一。  相似文献   

13.
利用2020年6月1日—2022年5月31日CMA GD模式2 m气温预报产品(预报时效为13—36 h)和同期江西省智能网格预报区域内地面站气温观测资料,计算气温预报准确率、平均误差和均方根误差,并统计分析其时空分布特征。结果表明: 1)模式预报准确率在不同月份、起报时次存在差异,暖季总体较高,冷季总体较低;暖季08时起报产品的月准确率总体高于20时,冷季反之;秋、冬季旬准确率分布更离散。模式预报产品其准确率明显低于中央气象台和江西省气象台订正产品,需订正后使用。08时起报产品对寒潮的预报效果优于20时。2)气温预报年误差分布存在日变化,最大值出现在08时,最小值出现在15时;年均方根误差峰值出现在15时和06时,白天大于夜间。3)冬季平均误差多为正值,夏季为负值,春、秋季平均误差大小界于冬、夏季之间;白天时段夏季均方根误差最大,夜间时段冬季最大。4)气温预报年误差地理分布特征明显,平原地区预报值偏低,年均方根误差最小;丘陵和山区22 h时效预报值偏高,31 h时效偏低;高山站预报值偏高,年均方根误差最大。丘陵地区负误差最大,平原地区最小;山区正误差最大。  相似文献   

14.
采用气候概率统计和多时效平均的思路,对2018—2019年的欧洲中期天气预报中心(ECWMF)高分辨率模式2 m温度产品在六盘水市的预报误差进行统计分析,并对采用指标订正后的2020年度模式预报准确率进行检验评估。结果表明:ECWMF高分辨率模式对六盘水市的温度预报误差随时效的增加而逐渐减小,且各时效平均的最高温度年均预报误差和误差标准差要明显高于最低温度;对于六盘水而言,模式的温度预报在初夏(6月)可靠性最高,而在春季(3—4月)最低;通过采用预报误差最大占比对逐月多时效平均的模式最低温度预报进行订正,以及根据天气类型采用不用订正方式与订正指标对模式24 h最高温度预报进行订正,能够大幅提升全市未来5 d(120 h)综合最低温度和24 h内的最高温度预报准确率,分别稳定在90%和70%以上;经过订正后,全市的2020年度平均最低温度预报准确率与实际相当,而24 h最高温度预报准确率要高于实际预报准确率。  相似文献   

15.
利用大邑、西岭雪山滑雪场及周边区域自动站2005~2017年每年10月~次年2月逐日最低温度资料,通过统计分析区域自动站与大邑站候平均最低温度差值,建立以大邑本站最低温度预报值为基础,加上逐候最低温度差值后得到区域各站的日最低温度预报的候最低温度差值订正方法;用距滑雪场最近的格点温度预报数据代替滑雪场站点温度预报,选出最低温度,以气温预报变化量,建立最低气温预报的模式温度订正方法;建立以候最低温度差值订正和模式温度订正进行加权平均的最低温度集成订正方法。通过对以上三种最低温度预报方法进行检验,发现最低温度集成订正方法预报准确率最高。基于最低温度集成订正方法预报西岭雪山滑雪场的最低温度,结合智能网格降水预报结果和降雪最低温度阈值判别,建立西岭雪山降雪的订正预报方法。   相似文献   

16.
本文基于多年连续观测所得的九龙站加密探空资料,通过对比分析,认识到该站的边界层大气在夏季呈现以下特征:大气温度/湿度随高度增长而降低,不同时次温度/湿度的差异主要集中在中低层大气中,越靠近地面大气温度/湿度差异越突出。从不同时次的表现来看,08时的温度最低,14时温度值最高。08时和14时大气的比湿较小,02时和20时的大气比湿较大。位温则是随高度增长,最大差异出现在3320m以下大气层中,14时和20时位温廓线存在明显的绝热及超绝热现象,该2个时次大气边界层表现为明显的混合边界层特征,低层大气层结为静力不稳定。而08时和02时的大气廓线则呈现稳定边界层特征。四个时次风速廓线都是次地转的,边界层内某一高度皆有一个风速极大值出现,20时边界层内风速极大值最大。地表物理量逐日演变情况为:08时温度最低,其次是02时,然后是20时,最高温度出现在14时,这个时次的变动幅度也最为显著。14时、08时比湿均值最小,20时、02时平均比湿较大,20时变幅最大。最低气压出现在20时,其次是14时,然后是08时,最高气压出现在02时,20时变幅最大。02时地面风速最小,其次是08时,再次为20时,14时风速最大,变动幅度最大。   相似文献   

17.
基于中国气象局(China Meterological Administration,CMA)高分辨率数值预报产品、欧洲中期数值预报中心(the European Center for Medium-range Weather Forecast,ECMWF)精细化数值预报产品和国家级地面观测站数据,采用小波分析方法及滑动训练、最优融合等技术对模式误差序列进行时频处理,实现了对模式系统误差和局地误差的订正,发展了西北区智能网格气温客观预报方法(northwest intelligent grid temperature objective prediction method,NWTM)。以2017年3月—2018年2月数据作为训练样本,对2018年3月—2019年1月西北区239个国家基本站进行检验。结果表明:1)NWTM对CMA和ECMWF两种模式产品的气温预报能力有显著的提升;随着预报时效增长,两种模式订正产品的误差增大。2)NWTM对ECMWF西北区最高气温的订正效果要明显优于CMA,但就最低气温而言,NWTM对CMA的订正效果更为显著。其中,就24 h最高气温而言,ECMWF在宁夏的订正效果最好,CMA在青海的订正效果最好;而对于24 h最低气温的预报,CMA在西北4省的订正效果相差不大,ECMWF在陕西的订正效果最好。3)空间误差检验表明:针对最高气温的预报,ECMWF订正产品的订正能力明显优于CMA,特别是在甘肃河西走廊和中东部、陕西北部和南部、宁夏中南部及青海大部。就最低气温的预报而言,ECMWF和CMA对甘肃河东和陕西南部的订正能力较好;ECMWF订正产品在宁夏中南部及青海南部的订正能力高于CMA,而CMA订正产品在陕西中部的订正能力更优。  相似文献   

18.
北京降水相态判别指标及检验   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高降水相态预报准确率,以北京南郊观象台为代表站,选取1951年1月至2011年4月逐日20时至20时出现的雨夹雪日数,统计分析其月变化特征;再选取2000-2011年10月-4月08时和20时出现的雨、雨夹雪、雪个例,使用与降水个例对应时次的地面及高空常规观测数据,统计分析各层常用气象要素在各降水相态判别中的作用,并找出主要影响因子及降水相态判别指标;应用多元回归方法,建立降水相态统计预报方程,并对方程及判别指标进行检验。结果表明:雨和雪的温度、露点平均值在低层(地面到850 hPa)有明显差异,但随着高度增加其差异逐渐减小;因雨和雪的温度露点差平均值各层差异均很小,使用温度露点差很难区分降水相态;经过对2011年11月至2012年3月出现的降水相态进行检验可知,总结出的地面温度和露点判别指标以及降水相态统计预报方程均有一定的参考价值,可为今后做降水相态预报服务提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号