首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inductively coupled plasma-mass spectrometry (ICP-MS) after NiS fire assay-Te co-precipitation was employed in the determination of Ru, Rh, Pd, Os, Ir and Pt at ng g-1 levels in six platinum-group element (PGE) geological reference materials. In general, the average of several results was in good agreement with the certified values taking into account respective uncertainties. High relative standard deviations were observed for the reference materials GPt-3 and GPt-4. Problems associated with the NiS fire assay procedure and PGE determination at the sub-10 ng g-1 level are reviewed and discussed.  相似文献   

2.
The platinum-group elements (PGE) and gold have been determined in twenty international rock reference materials by inductively coupled plasma-mass spectrometry (ICP-MS) after pre-concentration by a nickel sulfide fire assay. It was possible to achieve determination limits for a 50 g sample that ranged from 1 pg g-1 (Rh) to 23 pg g-1 (Au). Compared to published certified and recommended values for rock reference materials, the trueness of the method was found to be good. However, in some cases we observed large deviations for all elements in the sub 10 ng g-1 range within individual reference sample splits. Our results show that the PGE and Au are inhomogeneously distributed in the reference materials analysed here, where they are present in low concentrations, using 50 g test portions.  相似文献   

3.
The direct analysis of nickel sulfide fire assay buttons by UV laser ablation ICP-MS was used to determine the platinum-group elements and gold in the following reference materials: UMT-1, WPR-1, WMG-1, GPt-4, GPt-6 and CHR-Bkg. The instrument was calibrated with buttons prepared using quartz doped with the appropriate standard solutions. Analytical precision (RSD) was generally better than 10%, although occasional higher RSDs may infer local heterogeneities within nickel sulfide buttons. Good or excellent agreement was observed between analysed and reference material values except Rh in UMT-1 and WMG-1, which suffered an interference from copper. Detection limits calculated as 10 s quantitation limits were Au (1.7 ng g−1), Pd (3.3 ng g−1), Pt (8.3 ng g−1), Os (1.3 ng g−1), Rh (1 ng g−1), Ru (5 ng g−1) and Ir (0.7 ng g−1).  相似文献   

4.
One or two gram aliquots of twelve reference materials with low platinum-group element (PGE) abundances (Ir concentrations ranging from 30 to 510 pg g-1) were analysed by isotope dilution ICP-MS using an on-line chromatographic matrix separation after acid digestion in a high pressure asher (HPA-S) to determine the concentrations of Ru, Pd, Re, Ir and Pt. Osmium concentrations were determined via ID-ICP-MS but as volatile OsO4, whereas Rh concentrations were calculated by comparing the peak areas of the chromatographic peak with that of a standard solution. Validation of the method was performed and the concepts of traceability and measurement uncertainty were applied to assure comparability. The reference materials BCR-2, BHVO-1, BHVO-2, BIR-1, DNC-1, EN026 10D-3, MAG-1, RGM-1, SCo-1, SDO-1, TDB-1 and W-2 were investigated to test for their usefulness for certification. The use of TDB-1 is highly recommended because it is homogeneous at the two gram level and many values based on several different analytical procedures have been published. It is recommended that our efforts should focus on the certification of this reference material to reduce the uncertainties of its currently certified values (Pd and Pt only) and to assign certified values to the other PGE and Re. It is necessary to have at least one well-characterised RM for validation of methods applied to the analysis of PGE and Re in low abundance samples, although the matrix of TDB-1 might not completely match those of many samples.  相似文献   

5.
A new technique for the in situ analysis of Re, Au, Pd, Pt and Rh in natural basalt glass by laser ablation (LA)-ICP-MS is described. The method involves external calibration against NIST SRM 612/613 or 614/615 glass certified reference materials, internal standardisation using Ca, and ablation with a 200 μm wide beam spot and a pulsed laser repetition rate of 50 Hz. Under these conditions, sensitivities for Re, Au, Pd, Pt and Rh analyte ions are ˜ 5000 to 100,000 cps/μg g-1. This is sufficient to make measurements precise to ˜ 10% at the 2-10 μg g-1 level, which is well within the range of concentrations expected in many basalts. For LA-ICP-MS calibration and a demonstration of the accuracy of the technique, concentrations of Re, Au, Pd, Pt and Rh in the NIST SRM 610/611 (˜ 1 to 50 μg g-1), 612/613 (˜ 1 to 7 μg g-1), 614/615 (˜ 0.2 to 2 μg g-1) and 616/617 (˜ 0.004 to 2 μg g-1) glasses were determined by solution-nebulisation (SN)-ICP-MS. Using the 612/613 or 614/615 glasses as calibration standards, LA-ICP-MS measurements of these elements in the other NIST glasses fell within ˜ 15% of those determined by SN-ICP-MS. Replicate LA-ICP-MS analyses of the 612/613 and 614/615 glasses indicate that, apart from certain anomalous domains, the glasses are homogeneous for Re, Au, Pd, Pt and Rh to better than 3.5%. Two LA-ICP-MS analyses of natural, island-arc basalt glasses exhibit large fractionations of Re, Au and Pd relative to Pt and Rh, compared to the relative abundances in the primitive mantle.  相似文献   

6.
Trace elements in the Geological Survey of Japan carbonate reference materials Coral JCp-1 and Giant Clam JCt-1 were determined by inductively coupled plasma-mass spectrometry after digestion with 2% v/v HNO3. A standard addition method was adopted in this determination in order to neutralise the Ca matrix effect. In addition, Sc, Y, In and Bi were used as internal standards to control the matrix effect and correct instrumental drift. Of the eighteen elements measured in JCp-1, precisions for fourteen elements, including Cu, Cd and Ba, were better than 10% RSD and concentrations ranged from 0.002 μg g-1 (Cs) to 8.02 μg g-1 (Ba). The concentrations of measured trace elements in JCt-1, except for Cu, were lower than those in JCp-1. Precisions for all elements with concentrations higher than 0.04 μg g-1 in JCt-1 were also better than 10% RSD and concentrations were found to be between 0.001 μg g-1 (Cs) and 4.84 μg g-1 (Ba). The concentrations of more than fifteen trace elements in the aragonite reference materials are reported here for the first time. Both reference materials are suitable for use in geochemical studies of environmental reconstruction based upon biogenic carbonate materials.  相似文献   

7.
The concentrations of fifty trace elements, including relatively volatile elements and transition metal elements, in fused glasses of Geological Survey of Japan rock reference materials GSJ JR-2, JA-1, JA-2, JB-1a, JB-3, JGb-1 and JF-1 were determined by particle (proton) induced X-ray emission (PIXE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The fused glasses were prepared by rapid fusion and subsequent quenching in welded platinum capsules and were found to be homogeneous for major elements and for trace elements with concentrations of more than 1 μg g-1 within the observed precision (± 10% mean) on a 70 μm sampling scale. The values obtained by PIXE and LA-ICP-MS for the transition elements (Cr, Mn, Fe, Ni and Cu), the relatively volatile elements (Zn, Ga, Rb and Pb) and the refractory elements (Y, Zr, Nb and Th) with concentrations greater than a few μg g-1 showed good agreement (within 10 % relative difference). The values for almost all the elements detected at concentrations higher than 1 μg g-1 as determined by LA-ICP-MS also agreed well with the reference values (mean relative difference < ± 10%), except for B and Cu. The good agreement confirmed the appropriateness of the NIST SRM 600 series glass calibration reference material for LA-ICP-MS analysis of glasses with variable major-element compositions for almost all elements. The concentrations of Cu in all the samples were lower than the reference values, which was attributed to adsorption of the transition metals onto the platinum capsule during preparation.  相似文献   

8.
Some recent experiments on the determination of Au and the platinum-group elements (PGE) in geochemical samples are reviewed. Emphasis is given to the determination of ultra-low levels of PGE concentrations in resistant matrices, including chromites, molybdenites and ultrabasic ores. The problems and features of PGE determination in samples of various chemical composition are considered. For each sample type studied, a series of sample preparation techniques are proposed. These techniques included acid digestion, fusion with sodium peroxide, cold sintering with an oxidizing mixture of Na2O2+ Na2CO3 and also oxidizing fluorination with bromine trifluoride. A new approach for preparing geochemical material prior to digestion, based on mechano-chemical activation with simultaneous hyperfine grinding, is proposed and studied. The instrumental determination of PGE contents was carried out directly by AAS from extracted organic phases. It was found that a combination of digestion processes was required to achieve geochemical background levels of Au and PGE concentrations with the following detection limits: Pd, Rh - 1 ng g−1, Pt, Ru - 10 ng g−1, Au - 0.2 ng g−1, Ag - 0.1 ng g−1. The uncertainty in PGE and Au determination in geochemical samples is dependent on metal concentration, and also on their distribution in samples. The total analytical uncertainty of the proposed method is between 15-30%.  相似文献   

9.
The microanalytical capability of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to determine ultra trace elemental concentrations has been demonstrated by the analysis of two low concentration glass standard reference materials, NIST SRM 614 and 616. Results for fifty two elements at concentrations in the low ng g-1 range are compared with those determined using secondary ion mass spectrometry (SIMS). Both techniques provide results at these concentrations that generally agree within 95% confidence limits, demonstrating the accuracy for ultra-trace level of in situ determinations by the two techniques. At concentrations of less than 20 ng g-1 in NIST SRM 616, an accuracy and precision of better than 10% has been obtained for most mono-isotopic rare earth elements, when a spot size of 50 μm is used. Limits of detection for selected elements were as low as 0.5 ng g-1.  相似文献   

10.
The beryllium and zirconium contents of 45 geochemical reference samples have been determined by inductively coupled plasma after fusion of the samples with lithium metaborate and dissolution of the melt in dilute nitric acid. The method described here is rapid and sample preparation straightforward. Good agreement is shown with previously published results for these two elements. A correction has to be made for an interference due to vanadium in determining the beryllium content, and there is a slight interference due to yttrium in the determination of zirconium. The detection limit for beryllium is about 0.2 μg g-1 and for zirconium about 15 μg g-1 in the sample.  相似文献   

11.
Nanometre-sized alumina was chemically modified with gallic acid (GA) and used as a solid phase adsorption material for the determination of trace amounts of V, Nb and Ta in natural water, soil and stream sediment samples by inductively coupled plasma-mass spectrometry. The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analytes were investigated. The results showed that V, Nb and Ta could be adsorbed at pH 4.0 and recovered with 1 ml of 2.0 mol l-1 HCl. Under optimised conditions, the adsorption capacity of GA-modified nanometre-sized Al2O3 was found to be 7.0, 8.9, 13.3 mg g-1 for V, Nb and Ta, respectively. The limits of detection were as low as 0.25, 0.24 and 0.66 ng l-1 for V, Nb and Ta, respectively with a concentration factor of fifty. The recovery of V, Nb and Ta for spiked water samples was between 85.7 and 116%. The developed method has also been applied to the determination of trace V, Nb and Ta in soil and stream sediment certified materials, and the determined values were in a good agreement with the certified values.  相似文献   

12.
New concentrations for Au, Ir and Ag obtained by instrumental neutron activation analysis are presented for seventy geochemical reference materials. Results in agreement with literature values for Au and Ir down to concentrations of a few ng g−1 were obtained. For Au and Ir concentrations above 10 ng g−1, the repeatability of replicate analyses of reference materials was mostly better than 10%. For concentrations between 1 and 10 ng g−1 the RSD for Ir was 10–30%, whereas for Au it was higher and more variable (20–50%). In addition, concentrations for Cd and Hg are presented for some of the same reference materials. The high RSD at relatively high concentrations seen in gold for some RMs (e.g., WMG-1, WMS-1) did not exist for Ir and suggests homogeneity for this platinum-group element at the sub-sample size used in this study. For the following eight RMs, mostly ultramafic rocks (CHR-Pt+, OREAS-13P, OREAS-14P, PCC-1, UMT-1, WMG-1, WMS-1, WPR-1), Ir measurements agreed within ± 10% of mostly certified or recommended concentrations, which ranged from 2 ng g−1 to 6 μg g−1. For the reference material UB-N, iridium concentration compared favourably to published results obtained by isotope dilution ICP-MS methods and a previously unrecognised heterogeneity is inferred for Au, Hg and Sb, but not for the other measured elements.  相似文献   

13.
Procedures for sampling, sample preparation and ICP-MS analysis of endemic sponges from Lake Baikal have been developed. Sample decomposition was carried out using an open acid decomposition with ultrasound treatment. The distribution of nineteen elements (Mg, Al, P, Ca, Ti, Mn, Co, Ni, Cu, Rb, Sr, Y, Cd, Ba, La, Ce, Pb, Th and U) in different parts of a sponge's body (outer and inner layers and layers adjacent to the substratum) was studied. Detection limits were determined; these ranged from 0.013 to 4.12 μg g-1 for trace elements and from 23 to 130 μg g-1 for biogenic elements. The degree of elemental uptake by living substances is discussed with regard to the environment.  相似文献   

14.
The present study describes a method for the extraction of Pt, Pd, Rh, Ru, Ir and Au from various geological materials after fusion with sodium peroxide in zirconium crucibles involving samples that vary in mass from 1 g to more than 20 g. Precipitation is brought about by reduction of the platinum-group elements (PGEs) with Sn2+, using selenium and tellurium as carriers in the presence of a catalyst (KI). The extraction yields obtained by this method are between 95 and 100% for PGEs. Gold is less well extracted (around 80%). Detection of the noble metals in the extraction residues is carried out by using ICP-MS. The results obtained by this technique are reported for five CCRMP certified reference materials and are close to their certified values. The elements were also determined in a natural glass sample melted during a meteoritic impact and contaminated by PGEs at ultra-trace concentrations.  相似文献   

15.
Two chromitite samples from the Isles of Shetland (North Scotland) have been processed, each in 200 kg quantities, as reference samples for the determination of gold and the platinum-group elements (PGE). One of these samples, Chromitite CHR-Pt+ is enriched in the PGE and the other, Chromitite CHR-Bkg has much lower concentrations. A detailed assessment of sample homogeneity is presented, together with the results of a cooperative study by thirty-five international geochemical laboratories, private and public. Contributed data together with derived working values are presented for Au and the PGE as well as for major, minor and a few trace elements. It is hoped that this first compilation report will encourage additional laboratories to participate in further studies of the PGE in these two CHR samples.  相似文献   

16.
A simple and accurate method to determine fluorine and chlorine contents in small amounts (∼ 30 mg) in rock has been developed using ion chromatography after extraction by alkaline fusion. Powdered sample was mixed with sodium carbonate and zinc oxide at a mass ratio of 1:3:1, and was fused in an electric furnace at 900 °C for 30-40 minutes. An aqueous solution obtained by dissolving the fused silicate rock was diluted to the appropriate concentration of sodium carbonate (< ∼ 24 mmol l-1) to minimise the tailing effect on F- during ion chromatography caused by the large amount of carbonate species originating from the flux. Fluorine and chlorine contents were then determined by a standard additions method. Based on the relative standard deviation of the backgrounds, detection limits of both fluorine and chlorine were ∼ 4 μg g-1, when 30 mg test portions were fused and diluted by a factor of 1200. We also report new fluorine and chlorine contents in nine GSJ (Geological Survey of Japan) reference materials, including peridotite (JP-1), granite (JG-1a), basalts (JB-1b, 2 and 3), andesites (JA-1 and 2) and rhyolites (JR-1 and 2). Fluorine and chlorine contents in the reference materials in this study were consistent with previously reported values. Reproducibilities were < 10 % for samples with F and Cl concentrations of > 20 μg g-1 and < 20 % with F and Cl < 20 μg g-1.  相似文献   

17.
The applicability of size-exclusion chromatography (SEC) coupled online with a high resolution ICP-MS (HR-ICP-MS) to investigate the speciation of the platinum-group elements (PGE), Rh, Pd and Pt, was evaluated. Experiments were carried out to determine the efficiency of different hydrophilic and hydrophobic size-exclusion gel materials to select the optimal eluent in respect of resolution, recovery, reproducibility and limit of detection. The suitability of HR-ICP-MS as a reliable detection instrument at low pg ml−1 levels was investigated by examining possible mass interferences with Rh, Pd and Pt. Laboratory experiments demonstrated the interaction and capability of forming complexes of humic substances with PGE, demonstrating the potential role of these ubiquitous natural substances in the mobilisation of PGE in the environment.  相似文献   

18.
19.
We present a new method that determines precisely and accurately rare earth elements (REE) at the sub-ng g-1 level in ultramafic rocks based on acid dissolution and quadrupole ICP-MS with systematic interference corrections on each sample. The method is demonstrated by analyses of the international geochemical reference materials, PCC-1 (peridotite), DTS-1 (dunite) and DTS-2 (dunite) provided by the United States Geological Survey (USGS), and JP-1 (peridotite) issued by the Geological Survey of Japan (GSJ). Detection limits, as rock equivalent, were calculated to be 0.01-0.08 ng g-1 for our instrument, which is sufficiently low compared to the REE concentrations of ultramafic rocks. In addition, procedural blanks of the proposed method were 0.2-5 pg, which is negligible even for the ultra-low level REE determinations. Reproducibility obtained from separate dissolutions and measurements of USGS DTS-2 and GSJ JP-1 was 3-6%, which corresponds to the high-precision data obtained by ID-TIMS or magnetic sector field ICP-MS with a desolvating nebuliser. The REE data determined exhibit smooth chondrite-normalised REE patterns for all of the tested geochemical reference materials, and the abundances are in good agreement with recently published data.  相似文献   

20.
We present boron isotope and concentration data from magmatic (komatiitic to rhyolitic) and sedimentary geological silicate and artificial glass reference materials that cover a wide spectrum of boron isotope compositions and boron concentrations. Boron isotope compositions were determined by TIMS (Cs2BO2+ -graphite and BO2- method) and boron concentrations by ICP-AES. Boron concentrations ranged from 7 to 159μ g-1 and agree within 14% with published values. Based on replicate analyses of individually prepared sample aliquots an overall external reproducibility of better than 10% was determined. The obtained δ11B values ranged from -12.6 to +13.6% and were reproducible within 1.1 % (2 RSD; excluding NTIMS) on the basis of individually prepared sample aliquots. The δ11B values of JA-1 (+5.3%), JB-3 (+5.9%) and JR-2 (+2.9%) overlap the published data within analytical uncertainty. For the first time δ11B values for the TB (-12.6%) and the MPI-DING glasses GOR-128-G (+13.6%), GOR-132-G (+7.1 %) and StHs6/80-G (-4.5%) are reported. The δ11B values obtained by the Cs2BO2+ -graphite and the BO2- method as well as the majority of δ11B values obtained using different sample preparation methods agree within analytical uncertainty. Therefore, we conclude that none of these analytical methods introduce any systematic error on the obtained δ11B values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号