首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
High‐grade mylonites occur in the Takahama metamorphic rocks, a member of the high‐pressure low‐temperature type Nagasaki Metamorphic Rocks, western Kyushu, Japan. Mafic layers within the mylonites retain reaction microstructures consisting of margarite aggregates armoring both corundum and kyanite. The following retrograde reaction well accounts for the microstructures in the CaO–Al2O3–SiO2–H2O system: 3Al2O3 + 2Al2SiO5 + 2Ca2Al3Si3O12(OH) + 3H2O = 2Ca2Al8Si4O20(OH)4 (corundum + kyanite + clinozoisite + fluid = margarite). Mass balance analyses and chemical potential modeling reveal that the chemical potential gradients present between kyanite and corundum have likely driven the transport of the CaO and SiO2 components. The mylonitization is considered to take place chronologically after peak metamorphism and before the above reaction, based on the following features: approximately constant thickness of the margarite aggregates, random orientation of margarite, and local modification of garnet composition at a boudin neck that formed during mylonitization. The estimated peak temperature of 640°C and the pressure–temperature conditions of the above reaction indicate that the mylonitization took place at temperature between 530 and 640°C at pressures higher than 1.2 GPa, approximately equivalent to the depth of the lower crust of island arcs.  相似文献   

2.
The microstructure charateristics of illite from the Chuanlinggou Formation of Changcheng System (Chch) in Jixian County, Tianjin City has been studied by means of high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), X-ray energy dispersive spectrum (EDS) and X-ray powder diffraction (XRD). The Kübler index of "illite crystallinity" is 0.505°△2θ, which indicates that the host rock is in a middle diagenetic stage. The chemical analyses of EDS for illite studied indicate a heavily absent in interlayer cation and an average chemical formula of K0.57(Al1.80Mg0.42Fe2 0.12)∑=2.34 (Si2.92Al1.08)∑=4O10(OH)2. It is found, from one-dimensional lattice images, that the layers of illite not only stack in a flat way but also in a curving way. A "matting fabric" illite structure results from stacking faults. Combined with SAED analysis the illite studied can be affirmed as 1M illite. The two-dimensional lattice images are obtained from [100] and [110] incidences, whose lattice images have the same d-values but different intersecting angles. The two-dimensional lattice image with [100] incidence is orthogonal to each other, whilst that with [110] incidence is oblique. This paper provides some important structure information of authigenic clay minerals for the well-known mesoproterozoic section of Jixian County.  相似文献   

3.
The paper presents a model of the kinetics of electronically excited O2(c1Σu,v), O2(A′3Δu,v), O2(A3Σu+,v) molecules at heights of the lower thermosphere and mesosphere with allowance for electronic excitation transfer processes during molecular collisions. The model is used to calculate the relative O2(A3Σu+,v) and O2(A′3Δu,v) populations at heights of 80–110 km. The calculated populations are compared with the available literature results on experimental estimates, and good agreement is obtained. It is shown how the increase in the quenching rates of the considered states by oxygen atoms affects the calculation results.  相似文献   

4.
Emf measurements were made on the cell Pt|Fe,(Fe,Mg)xSi2O6,SiO2|(ZrO2)0.85(CaO)0.15|Fe,FeO|Pt at 1000 K. Using the present data, the standard free energy of formation of ferrosilite (compound FeSiO3), from the component oxides FeO and SiO2, is calculated to be −6.35 ± 0.80 kJ/mol. The activity-composition relation for pyroxene solid solution shows that it has a positive deviation from ideality at 1000 K. The present results are compared with the results of other workers.ΔGmix andΔGex are calculated and plotted againstNFeSiO3.  相似文献   

5.
Experimental data on the stability of titan-phlogopite [K2Mg4TiAl2Si6O20(OH)4] are presented which show it to be stable to substantially higher temperatures than normal phlogopite [K2Mg6Al2Si6O20(OH)4]. A qualitative model to explain the role of titan-phlogopite during magma generation is put forward. Breakdown of titan-phlogopite during melting at depth (> 150km) on subducted lithospheric slabs is believed responsible for the concomitant increase of K and Ti observed in magmas erupted during orogenic volcanism. At lower pressures (up to about 10 kbar) beneath mid-oceanic ridges, titan-phlogopite is predicted to behave as a refractory phase during partial melting in the mantle, especially if H2O-excess conditions pertain, although at higher pressures in this environment it would almost certainly behave as a low-melting component.  相似文献   

6.
The source parameters of the Bohai Sea earthquake, July 18, 1969 and Yongshan, Yunnan earthquake, May 11, 1974 were determined by full — wave theory synthetic seismograms of teleseismic P waves. P+pP+sP wereform were calculated with WKBJ approximation and real integral paths. One — dimensional unilateral, finite propagation source was also considered. By trail — and — error in comparing the theoretical seismograms with the observational ones of WWSSN stations, the source parameters were obtained as follow: for Bohai earthquake, φ=195°, δ=85°, λ=65°,M o=0.9×1019Nm,L=59.9km.V R=3.5km/s, ∧ R =160°; for Yongshan earthquake, φ=240°, δ=80°, ∧=150°,M o=1.3×1018Nm,L=48.8km,V R=3km/s, ∧ R =−10°, where φ is strike, δ dip angle, λ slip angle,M o seismic moment,L rupture length,V R rupture propagation speed. As III type fractures the faulting propagated along the fault planes, and ∧ R is the angle from the strike to the propagation direction. Yongshan earthquake showed complexity in its focal process, having four sub—ruptures during the first 60 seconds. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 1–8, 1991.  相似文献   

7.
The crystal structure of fassaite from the Angra dos Reis meteorite has been determined by least-squares refinement of three-dimensional X-ray data to anR value of 3.3%. The pyroxene is monoclinic, space groupC2/c, with unit-cell dimensionsa = 9.738(1),b = 8.874(2),c = 5.2827(5)Å, β = 105.89(1)°, andV = 439.1(1)Å3. Average bond lengths are (Si,Al)-O = 1.651, M1-O = 2.061, and M2-O = 2.489Å. The distribution of iron and magnesium between M1 and M2 suggests a temperature of equilibration greater than 1000°C.Electron microprobe analysis of several fassaite grains reveals small but statistically significant variations of (Mg + Si) versus (Al - Ti). The range of fassaite composition may be represented byEn3Hd22TiCpx6(Di53±2CaTs16?2) whereEn=Mg2Si2O6,Hd=CaFeSi2O6,TiCpx=CaTiAl2O6,Di=CaMgSi2O6,CaTs=CaAl2SiO6. Most fassaite analyses calculated on the basis of four cations yielded greater than six anions, suggesting that part of the titanium or chromium might be reduced to Ti3+ or Cr2+.  相似文献   

8.
The SSQ-1 Digital Tape Recording Horizontal Pendulum Tiltmeter is an instrument of high sensitivity to detect the changes of ground tilt. It uses a quartz horizontal pendulum held by Z?llner bifilar suspension to sense vertical displacement, the eddy-current transducer on the pendulum converts its displacements into electric signals. Then a microcomputer is used for data acquisition and printing as well as digit tape recording. And at the same time, a filtering pen recorder is used for visible recording. The scale value of the instrument is calibrated by computer using the known tilt angle of the bulging plate — mercury cup. The scale value is 0.3–0.5 m(″)/mV. The following are the testing results for the earth tide observation obtained from the east-west component at Baijiatan Seismic Station, Beijing: r(O1): 0.6490±0.0179 α(O1): −3.83°±1.58° r(K1): 0.8049±0.0128 α(K1): 1.40°±0.90° r(M2): 0.6699±0.0040 α(M2): −0.27°±0.34° r(S2): 0.7316±0.0075 α(S2): 2.83°±0.58° r(M3): 0.8497±0.0964 α(M3): 1.61°±6.51° The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 353–359, 1993. In this work also participated Mr. Huai-Wen PAN and Wei-Jin ZHANG. And we here give special thanks to Yun-Zao XI, Qin-Wen XI, Bo-Xong TANG, Yi-Hui CHEN and An-Xu WU for their kind help in the development and test of the instrument. This paper is translated by Mr. Zhong ZHENG.  相似文献   

9.
This study compares the Isis II satellite measurements of the electron density and temperature, the integral airglow intensity and volume emission rate at 630 nm in the SAR arc region, observed at dusk on 4 August, 1972, in the Southern Hemisphere, during the main phase of the geomagnetic storm. The model results were obtained using the time dependent one-dimensional mathematical model of the Earth’s ionosphere and plasmasphere (the IZMIRAN model). The major enhancement to the IZMIRAN model developed in this study to explain the two component 630 nm emission observed is the analytical yield spectrum approach to calculate the fluxes of precipitating electrons and the additional production rates of N+2, O+2, O+(4S), O+(2D), O(2P), and O+(2P) ions, and O(1D) in the SAR arc regions in the Northern and Southern Hemispheres. In order to bring the measured and modelled electron temperatures into agreement, the additional heating electron rate of 1.05 eV cm−3 s−1 was added in the energy balance equation of electrons at altitudes above 5000 km during the main phase of the geomagnetic storm. This additional heating electron rate determines the thermally excited 630 nm emission observed. The IZMIRAN model calculates a 630 nm integral intensity above 350 km of 4.1 kR and a total 630 nm integral intensity of 8.1 kR, values which are slightly lower compared to the observed 4.7 kR and 10.6 kR. We conclude that the 630 nm emission observed can be explained considering both the soft energy electron excited component and the thermally excited component. It is found that the inclusion of N2(v > 0) and O2(v > 0) in the calculations of the O+(4S) loss rate improves the agreement between the calculated Ne and the data on 4 August, 1972. The N2(v > 0) and O2(v > 0) effects are enough to explain the electron density depression in the SAR arc F-region and above F2 peak altitude. Our calculations show that the increase in the O+ + N2 rate factor due to the vibrationally excited nitrogen produces the 5–19% reductions in the calculated quiet daytime peak density and the 16–24% decrease in NmF2 in the SAR arc region. The increase in the O+ + N2 loss rate due to vibrationally excited O2 produces the 7–26% decrease in the calculated quiet daytime peak density and the 12–26% decrease in NmF2 in the SAR arc region. We evaluated the role of the electron cooling rates by low-lying electronic excitation of O2(a1δg) and O2(b1σg+), and rotational excitation of O2, and found that the effect of these cooling rates on Te can be considered negligible during the quiet and geomagnetic storm period 3–4 August, 1972. The energy exchange between electron and ion gases, the cooling rate in collisions of O(3P) with thermal electrons with excitation of O(1D), and the electron cooling rates by vibrational excitation of O2 and N2 are the largest cooling rates above 200 km in the SAR arc region on 4 August, 1972. The enhanced IZMIRAN model calculates also number densities of N2(B3πg+), N2(C3πu), and N2(A3σu+) at several vibrational levels, O(1S), and the volume emission rate and integral intensity at 557.7 nm in the region between 120 and 1000 km. We found from the model that the integral integral intensity at 557.7 nm is much less than the integral intensity at 630 nm.  相似文献   

10.
Relative ‘echo intensity’ data (dI) from a bottom-mounted four-beam 300 kHz acoustic Doppler current profiler (ADCP) are used to infer propagation of vigorous processes above a continental slope. The 3- to 60-m horizontal beam spread and the 2-Hz sampling allow the distinction of different arrival times t i , i = 1,..., 4, at different distances in the acoustic beams from sharp changes in dI-content associated with frontal non-linear and turbulent bores or ‘waves’. The changes in dI are partially due to variations in amounts of resuspended material carried by the near-bottom turbulence and partially due to the fast variations in density stratification (‘stratified turbulence’), as inferred from 1-Hz sampled thermistor string data above the ADCP. Such bores are observed to pass the mooring up to 80 m above the bottom, having typical propagation speeds c = 0.15–0.5 m s−1, as determined from dI(t i ). Particle speeds in the immediate environment of a bore amount to |u|env=c ± 0.05 m s−1, the equality being a necessary condition for kinematic instability, whilst the maximum particle speeds amount |u|max = 1.2–2c. The dI-determined directions of up-, down- and alongslope processes are all to within ±10° of the ADCP’s beam-spread averaged current (particle velocity) data.  相似文献   

11.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   

12.
Samples from the surface of lava flows discharged by the 2012–2013 Tolbachik Fissure Eruption were found to contain oxysulfates of copper, sodium, and potassium: K2Cu3O(SO4)2 (fedotovite), NaKCu2O(SO4)2, and Na3K5Cu8O4(SO4)8. The last two phases have no naturally occurring or synthetic analogues that we are aware of. They form flattened crystals of prismatic to long-prismatic habits. The crystals of Na3K5Cu8O4(SO4)8 have a chemical composition corresponding to the empirical formula Na2.22K5.47Cu8.02S8.05O36. An X-ray analysis of this compound showed that it has a monoclinic symmetry, P2/c, a = 13.909(4), b = 4.977(1), c = 23.525(6) Å, β = 90.021(5)°, V = 1628.3(7) Å3. The crystal structure was determined by direct techniques and refined to yield R 1 for 3955 reflexes//web// with F 2 > 4σF. The compound NaKCu2O(SO4)2 also belongs to the monoclinic system, P2/c, a = 14.111(4), b = 4.946(1), c = 23.673(6) Å, β = 92.052(6)°, V = 1651.1(8) Å3. The structure was determined by direct techniques to yield a tentative structural model that has been refined up to R 1 = 0.135 for 4088 reflexes with F 2 > 4σF. The crystal structure of Na3K5Cu8O4(SO4)8 is based on chains of [O2Cu4]4+ consisting of rib-coupled oxy-centered tetrahedrons of (OCu4)6+. The chains are surrounded by sulfate radicals, resulting in columns of {[O2Cu4](SO4)4}4? aligned along the b axis. The interchain space contains completely ordered positions of Na+ and K+ cations. The principle underlying the connection of NaKCu2O(SO4)2 columns in the crystal structure of {[O2Cu4](SO4)4}4? is different, in view of the relation Na:K = 1 as contrasted with 3:5 for the compound Na3K5Cu8O4(SO4)8. The presence of oxy-centered tetrahedrons in the structure of these new compounds furnishes an indirect hint at the importance of polynuclear copper-oxygen radicals with centering oxygen atoms as forms of transport of copper by volcanic gases.  相似文献   

13.
Abstract

We discuss the propagation of internal waves in a rotating stratified unbounded fluid with randomly varying stability frequency, N. The first order smoothing approximation is used to derive the dispersion relation for the mean wave field when N is of the form N 2 = N o 2(1 + ?μ), where μ is a centered stationary random function of either depth (z) or time (t), N o = constant and O < ?2 ≦ 1. Expressions are then derived for the change in phase speed and growth rate due to the random fluctuations μ; in particular, attention is focused on the behaviour of these expressions for short and long correlation lengths (case μ = μ(z)) and times (case μ = μ(t)). For the case μ = μ(z), which represents a model for the temperature and salinity fine-structure in the ocean, the appropriate statistics of the fluctuations observed at station P (50°N, 145°W) have been incorporated into the theory to estimate the actual importance of the effects due to these random fluctuations. It is found that the phase speed of the mean wave decreases significantly if (i) the wavelength is short compared to g/No 2 or (ii) the wave number vector is essentially horizontal and the wave frequency is very close to N o. Also, the random fluctuations cause a significant growth (decay) in the amplitude of a wave propagating upwards (downwards) through a depth of a few kilometers. However, in the direction of energy propagation, the kinetic energy is conserved. Finally, it is shown that the average effect of the depth dependent fluctuations at station P is to slightly decrease the stability frequency and the magnitude of the group velocity.  相似文献   

14.
High-pressure phase relations in the system NaAl3Si3O11–CaAl4Si2O11 were examined at 13–23 GPa and 1600–1900 °C, using a multianvil apparatus. A Ca-aluminosilicate with CaAl4Si2O11 composition, designated CAS phase, is stable above about 13 GPa at 1600 °C. In the system NaAl3Si3O11–CaAl4Si2O11, the CAS phase dissolving NaAl3Si3O11 component coexists with jadeite, corundum and stishovite below 22 GPa, above which the CAS phase coexists with Na-rich calcium ferrite, corundum and stishovite. At 1600 °C, the solubility of NaAl3Si3O11 component in the CAS solid solution increases with increasing pressure up to about 50 mol% at about 22 GPa, above which the solubility decreases with pressure. The maximum solubility of NaAl3Si3O11 component in the CAS phase increases with temperature up to around 70 mol% at 1900 °C at 22 GPa. The dissociation of NaAlSi2O6 jadeite to NaAlSiO4 calcium ferrite plus stishovite occurs at about 22 GPa. Lattice parameters of the CAS phase with the hexagonal Ba-ferrite structure change with increase of the NaAl3Si3O11 component: a-axis decreases and c-axis slightly increases, resulting in decrease of molar volume. Enthalpies of the CAS solid solutions were measured by high-temperature drop-solution calorimetry techniques. The results show that enthalpy of hypothetical NaAl3Si3O11 CAS phase is much higher than the mixture of NaAlSi2O6 jadeite, corundum and stishovite and is close to that of the mixture of NaAlSiO4 calcium ferrite, corundum and stishovite. When we adopt the Na:Ca ratio of 75:25 of the natural Na-rich CAS phase in a shocked Martian meteorite, Zagami, the phase relations determined above suggest that the natural CAS phase crystallized from melt at pressure around 22 GPa and temperature close to or higher than 2000–2200 °C. The inferred P, T conditions are consistent with those estimated using other high-pressure minerals in the shocked meteorite.  相似文献   

15.
Summary Using the geocentric constant GM=398 601.3 × 10 9 m 3s –2 , the known value of the angular velocity of the Earth's rotation , Stokes' constants J n (k) and S n (k) upto n=21 (zonal), n=16 (tesseral and sectorial) [2], the geocentric co-ordinates and heights above sea-level of SAO satellite stations [2], the following will be derived: the potential on the geoid Wo, the scale factor for lengths Ro=GM/Wo, the radius-vector of the surface W=Wo, the parameters of the best-fitting Earth tri-axial ellipsoid, and the components of the deflections of the vertical with respect to the geocentric rotational IAG ellipsoid (Lucerne 1967), as well as to the best-fitting geocentric tri-axial ellipsoid. Some of the differences in the structure of the gravity field over the Northern and Southern Hemispheres will be given, and the mean values of gravity over the equatorial zone, determined from the dynamics of satellite orbits, on the one hand, and from terrestrial gravity data, on the other, will be compared.Presented at the Fifteenth IUGG General Assembly, Moscow, July 30 — August 14, 1971.  相似文献   

16.
Based on satellite observation data, using dynamics equation, the ionospheric O+ ion’s distribution in the synchronous altitude region for different geomagnetic activity indexK p is studied by theoretical modeling and numerical analyzing, and semi-empirical models for the O+ ion’s density and flux versus longitude in the synchronous altitude region for differentK p are given. The main results show that in the synchronous altitude region: (i) The O+ ion’s density and flux in day-side are larger than those in nightside. (ii) With longitude changing, the higher the geomagnetic activity indexK p is, the higher the O+ ion’s density and flux, and their variation amplitude will be. The O+ ion’s density and flux whenK p 6 will be about ten times as great as that whenK p = 0. (iii) WhenK p = 0 orK p 6, the O+ ion’s density reaches maximum at longitudes 120° and 240° respectively, and minimum in the magnetotail. WhenK p = 3−5, the O+ ion’s density gets to maximum at longitude 0°, and minimum in the magnetotail. However, the O+ ion’s flux reaches maximum at longitude 120° and 240° respectively, and minimum in the magnetotail for anyK p value.  相似文献   

17.
The anionic structure of magmatic liquids has been estimated at 1 atm and at pressures corresponding to those of the upper mantle. These estimates are based predominantly on spectroscopic data on binary metal oxide-silica and ternary metal oxide-silica-alumina melts. Structural information on melt compositions in aluminate-silica joins has been used to provide detailed information on the role of Al3+ in natural magma at atmospheric and high pressure.Regardless of pressure, andesitic melts may be described as combinations of chain, sheet, and three-dimensional network units. Nearly all Al3+ in the magmatic liquid resides in the three-dimensional network units. This Al3+ is locally charge-balanced with Na+, K+, Ca2+, and Mg2+. In the latter two cases, Al3+ and Si4+ are ordered, whereas for Na+ and K+, Si4+ and Al3+ are randomly mixed. Solution of water in natural magma results in the formation of new nonbridging oxygens in addition to OH groups attached to Si4+ and metal cations.On the basis of determined solution mechanisms of CO2 and H2O in silicate melts, thermodynamic properties of HO+CO2, fluids and hydrous silicate melts and melting phase relations in peridotite-H2O-CO2, systems, it is found that natural andesitic magma in equilibrium with spinel Iherzolite in the upper mantle (10–20 kbar) must contain at least 5–7 wt.% H2O. Andesitic magma with 5–7 wt.% H2O in solution may be described as a mixture of Al-free three-dimensional units, sheets, and chains with a small proportion (less than 10%) of monomers.  相似文献   

18.
Accurate crystal structure determination of complex phosphate Mg-fillowite.—Na2Ca(Mn4Mg2Fe)7[PO4]6 has been finished. Mg-fillowite occurs in muscovite-pegmatite in the Altay area, Xinjiang, China. It is of the trigonal lattice, with space group R-3, unit cell a=1.5143(3)nm, c=4.3191(2) nm, V=8.5736 nm3, Z = 18. The R-factor of the determination accuracy is R (I<2 σ(I)) = 0.0776. The cationic polyhedra consist of two kinds of structural units: compound column and screw column. In three-dimensional space, they are linked with each other through corner sharing or edge sharing to build the entire structure. There are 45 atoms in an asymmetric unit and 720 atoms in a unit cell. In terms of types and connection manners of the coordination polyhedra, the degree of complicity is rarely seen in all mineral crystal structures. Study of such a structure is significant for the classification of phosphate and the building rule of coordination polyhedra in a complex crystal structure.  相似文献   

19.
StudyofcalibrationfunctionforsurfacewavemagnitudeofDK1seismographsFENGXUE(薛峰)YONGZHAO(赵永)CenterforAnalysisandPrediction,Stat...  相似文献   

20.
In this paper we suggest that conditional estimator/predictor of rockburst probability (and rockburst hazard, P T (t)) can be approximated with the formula P T (t) = P 1(θ 1)…P N (θ N P dyn T (t), where P dyn T (t) is a time-dependent probability of rockburst given only the predicted seismic energy parameters, while P i (θ i ) are amplifying coefficients due to local geologic and mining conditions, as defined by the Expert Method of (rockburst) Hazard Evaluation (MRG) known in the Polish mining industry. All the elements of the formula are (approximately) calculable (on-line) and the resulting P T value satisfies inequalities 0 ≤ P T (t) ≤ 1. As a result, the hazard space (0–1) can be always divided into smaller subspaces (e.g., 0–10−5, 10−5–10−4, 10−4–10−3, 10−3–1), possibly named with symbols (e.g., A, B, C, D, …) called “hazard states” — which saves the prediction users from worrying of probabilities. The estimator P T can be interpreted as a formal statement of (reformulated) Comprehensive Method of Rockburst State of Hazard Evaluation, well known in Polish mining industry. The estimator P T is natural, logically consistent and physically interpretable. Due to full formalization, it can be easily generalized, incorporating relevant information from other sources/methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号