首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
郭忠贤  霍达 《岩土力学》2006,27(Z1):797-802
分析了刚性桩复合地基中垫层、桩及桩间土的共同作用机理,考虑复合地基中桩、土变形协调,提供一种计算复合地基桩土应力比的方法;在此基础上研究复合地基中垫层模量、桩端持力层模量、桩土相对刚度比、桩长径比、面积置换率等因素对复合地基桩土应力比的影响,分析刚性桩复合地基的承载特性。  相似文献   

2.
考虑桩端刺入沉降的桩土自平衡式复合地基设计   总被引:2,自引:0,他引:2  
刘鹏  杨光华 《岩土力学》2012,33(2):539-546
复合地基的本质是增强体与地基土通过变形协调共同承担上覆荷载。褥垫层的设置起到了协调桩土变形的作用,但褥垫层工作性状及变形特性尚不明确,其厚度设计仍然参考规范依靠经验判断,往往不能充分发挥地基土的承载作用。目前复合地基设计通常采用褥垫层调节桩土变形,而忽略了桩端刺入沉降协调桩土变形来发挥地基土的承载作用,为了利用桩端刺入沉降协调桩土变形,充分发挥桩间土承载的作用,减薄褥垫层或不设褥垫层并减小设计桩长,以期降低地基处理费用,实现桩土共同承担荷载的目的,建立了通过控制桩端刺入沉降协调桩土变形的自平衡式复合地基设计方法。通过与褥垫层方法对比以及工程实例计算,结果表明,该方法可更好地发挥桩土承载作用,为复合地基优化设计提供参考。  相似文献   

3.
对振冲碎石桩复合地基桩体和桩间土的变形与应力--应变关系进行研究。假设在荷载作用下,复合地基中桩体变形均匀,桩-土变形协调,推导出振冲碎石桩复合地基沉降计算公式为: ABk2 εh3v + 2ABhkεh2v + A ( D2 + B) h2hv = nh2 pD2 ; 利用牛顿迭代法解一元三次方程,可求得复合地基沉降。将本方法应用于沿海某大型储油罐工程,计算振冲碎石桩复合地基总沉降量为171. 5 mm,实测沉降量为 162. 2 mm,计算结果与实测结果基本吻合,表明该方法有一定的实用性。  相似文献   

4.
均质弹性地基中单桩的扭转振动特性研究   总被引:3,自引:0,他引:3  
王国才  王哲  陈龙珠  黄晋 《岩土力学》2008,29(11):3027-3031
利用积分方程的方法研究了均质弹性地基中单桩的扭转振动问题。在分析过程中,首先利用积分变换的方法得出均质弹性地基内作用一埋置扭矩时的基本解。基于基本解,根据变形协调条件建立了控制单桩扭转振动特性的第2类Fredholm积分方程。对所得积分方程进行数值求解得到单桩扭转振动时的扭矩和扭转角及动力柔度系数,并对其进行了参数分析。所得结论对桩基础设计与计算以及桩基低应变扭转波动测技术有一定的指导意义。  相似文献   

5.
提出一种多向荷载作用下层状地基中刚性桩筏基础的计算方法。基于剪切位移法,采用传递矩阵形式分析了竖向荷载下桩顶面-桩顶面相互作用;引入修正桩侧地基模量,采用有限差分法分析了水平荷载下桩顶面-桩顶面相互作用;基于层状弹性半空间理论,分析了多向荷载下桩顶面-土表面、土表面-桩顶面、土表面-土表面的相互作用关系。建立了桩土体系柔度矩阵,得到了多向荷载下层状地基中刚性桩筏基础的受力和变形的关系以及桩的内力和变形沿桩身分布规律。通过与有限元对比,验证了该方法的合理性和修正地基模量的优越性,并对多向荷载作用下的桩筏基础进行了计算分析,计算结果表明,水平力将会引起桩筏基础的倾斜。  相似文献   

6.
水泥土搅拌桩复合地基载荷试验数值分析   总被引:5,自引:0,他引:5  
邓永锋  刘松玉  洪振舜 《岩土力学》2004,25(Z2):310-314
水泥土搅拌桩在高速公路的软基处理中得到了广泛应用,但是对水泥土搅拌桩地基深层桩土应力比和变形未能有深入的认识.笔者应用弹性层状体系和Mindlin附加应力联合求解的方法,对水泥土搅拌桩复合地基载荷试验进行数值分析计算,总结了水泥土搅拌桩复合地基深层桩土应力比的变化规律,讨论了水泥土搅拌桩复合地基深层桩土变形协调问题.  相似文献   

7.
CFG桩复合地基受力性状三维数值模拟研究   总被引:3,自引:0,他引:3  
杨生彬  邵卫信  王吉元 《岩土力学》2008,29(12):3431-3436
以工程应用实例为背景,运用有限差分法数值模拟方法分析了在分级加载工况下CFG桩单桩及复合地基的变形和受力特征,模拟了桩-土共同承担荷载的复合效应以及褥垫层的效用.模拟结果表明,将具有刚性桩特点的CFG桩以一定的密度置入地基土中,可以有效地提高原地基土的承载能力,桩体应力发挥丰要集中在1/2桩长范围之内,适当加大桩长有助于控制地基变形,同时桩顶褥垫层的设置对于调整桩-土应力的分担起到了积极的作用,该分析方法及模拟成果对于类似工程具有一定的参考价值.  相似文献   

8.
高速公路工程中水泥搅拌桩桩身合理设计强度研究   总被引:2,自引:1,他引:1  
在公路工程的搅拌桩地基设计中,一般假设加固区桩土变形协调,从而采用复合地基理论进行设计。但是目前许多的工程实践表明在路堤荷载作用下,搅拌桩地基桩土之间存在差异沉降,桩身强度不能够完全发挥,为此需要对复合模量的表达式进行改进。本文采用有限元分析了路堤荷载作用下搅拌桩地基的变形响应情况,分析了加固区桩间土变形与桩身模量之间关系,得到了水泥土搅拌桩强度的合理范围。  相似文献   

9.
雷学文  陈凯杰 《岩土力学》2007,28(Z1):819-822
采用ABAQUS有限元软件,通过有限元数值模拟的方法分析了路堤荷载作用下桩-网复合地基中土工合成材料刚度、垫层厚度、桩体模量以及桩间距对复合地基的荷载传递特性、桩-土应力比、路基的表面沉降及侧向位移的影响。总结、分析计算结果,获得了桩-网复合地基承载及变形的一些基本特性,如:增加土工合成材料刚度,可显著地减小桩-土差异沉降和路基侧向位移,并增加桩-土应力比;增加垫层厚度,可明地改善桩-土荷载分担比和桩-土应力比等力学性状。这些结果对桩-网复合地基的设计与施工具有一定的指导意义。  相似文献   

10.
基于荷载传递法的CFG桩复合地基沉降计算   总被引:1,自引:0,他引:1  
赵明华  何腊平  张玲 《岩土力学》2010,31(3):839-844
深入分析了CFG桩复合地基的荷载传递机制,针对CFG桩复合地基中桩、土、垫层相互作用特点,基于荷载传递法,通过简化桩土单元体竖向相对位移分布模式,引入弹塑性荷载传递模型,并考虑桩体的上刺与下刺变形,建立出CFG桩复合地基沉降计算的基本微分方程,进而提出了一种新的能考虑桩-土-垫层体系共同作用的复合地基沉降计算方法。采用该沉降计算方法对某试验进行分析,其结果表明,沉降计算值与实测值吻合较好,且该方法计算工作量小,便于工程应用。  相似文献   

11.
A simplified analysis method has been developed to estimate the vertical movement and load distribution of pile raft foundations subjected to ground movements induced by tunneling based on a two‐stage method. In this method, the Loganathan–Polous analytical solution is used to estimate the free soil movement induced by tunneling in the first stage. In the second stage, composing the soil movement to the pile, the governing equilibrium equations of piles are solved by the finite difference method. The interactions between structural members (such as pile–soil, pile–raft, raft–soil, and pile–pile) are modeled based on the elastic theory method of a layered half‐space. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups, and pile rafts subjected to ground movements induced by tunneling. Good agreements between these solutions are demonstrated. The method is also used for a parametric study to develop a better understanding of the behavior of pile rafts influenced by tunneling operation in layered soil foundations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The torsional dynamic response of a pile embedded in layered soil is investigated while considering the influence of the pile end soil. The finite soil layers under the end of the pile are modeled as a fictitious soil pile that has the same cross-sectional area as the pile and is in perfect contact with the pile end. To allow for variations of the modulus or cross-sectional area of the pile and soil, the soil surrounding and below the pile is vertically decomposed into finite layers. Using the Laplace transform and impedance function transfer method, the analytical solution for the dynamic response of the pile head in the frequency domain is then obtained, and the relevant semi-analytical solution in the time domain is derived using the inverse Fourier transform and convolution theorem. The rationality and accuracy of the solution is verified by comparing the torsional dynamic behavior of the pile calculated with the fictitious soil pile with those based on a rigid support model and a viscoelastic support model. Finally, a parametric study is conducted to investigate the influence of the properties and thickness of the pile end soil on the torsional dynamic response of the pile.  相似文献   

13.
郑长杰  丁选明  安淑红 《岩土力学》2016,37(9):2477-2483
考虑地基沉积过程中产生的竖向和水平向力学性质的差异,对横观各向同性地基中管桩扭转振动频域响应进行了理论研究。基于横观各向同性材料的本构关系以及桩-土耦合扭转振动,建立了桩土系统定解问题,通过Laplace变换和分离变量法求得了桩周土和桩芯土扭转振动位移形式解。通过桩-土接触面的连续条件,求得了管桩扭转频域响应解析解,并得到了桩顶复动刚度和速度导纳的表达式。将所得解退化到横观各向同性地基中实心桩解以及均匀地基中管桩解,并与已有文献进行了对比,验证了解的合理性。通过数值算例,分析了桩周土和桩芯土的横观各向同性力学参数对桩顶扭转复刚度及速度导纳的影响。  相似文献   

14.
Considering there is hardly any concerted effort to analyze the pile‐raft foundations under complex loads (combined with vertical loads, horizontal loads and moments), an analysis method is proposed in this paper to estimate the responses of pile‐raft foundations which are subjected to vertical loads, horizontal loads and moments in layered soils based on solutions for stresses and displacements in layered elastic half space. Pile to pile, pile to soil surface, soil surface to pile and soil surface to soil surface interactions are key ingredients for calculating the responses of pile‐raft foundations accurately. Those interactions are fully taken into account to estimate the responses of pile‐raft foundations subject to vertical loads, horizontal loads and moments in layered soils. The constraints of the raft on vertical movements, horizontal movements and rotations of the piles as well as the constraints of the raft on vertical movements and horizontal movements of the soils are considered to reflect the coupled effect on the raft. The method is verified through comparisons with the published methods and FEM. Then, the method is adopted to investigate the influence of soil stratigraphy on pile responses. The study shows that it is necessary to consider the soil non‐homogeneity when estimating the responses of pile‐raft foundations in layered soils, especially when estimating the horizontal responses of pile‐raft foundations. The horizontal loads and the moments have a significant impact on vertical responses of piles in pile‐raft foundations, while vertical loads have little influence on horizontal responses of piles in pile‐raft foundations in the cases of small deformations. The proposed method can provide a simple and useful tool for engineering design. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A comprehensive analytical solution is developed in this paper to investigate the torsional vibration of an end bearing pile embedded in a homogeneous poroelastic medium and subjected to a time-harmonic torsional loading. The poroelastic medium is modeled using Biot’s two-phased linear theory and the pile using one-dimensional elastic theory. By using the separation of variables technique, the torsional response of the soil layer is solved first. Then based on perfect contact between the pile and soil, the dynamic response of the pile is obtained in a closed form. Numerical results for torsional impedance of the soil layer are presented first to portray the influence of wave modes, slenderness ratio, pile–soil modulus ratio and poroelastic properties. A comparison with the plane strain theory is performed. The selected numerical results are obtained to analyze the influence of the major parameters on the torsional impedance at the level of the pile head. Finally, the dynamic torsional impedance of this study is compared with that for floating pile in elastic soil.  相似文献   

16.
Torsional piles in non-homogeneous media   总被引:1,自引:0,他引:1  
The torsional response of a pile exhibits features which are a mixture of those for axial and lateral response. At low load levels, the response is dominated by interaction with the upper soil layers and by the pile rigidity itself, similar to laterally loaded piles. However, failure will generally occur by the whole pile twisting, and so the latter part of the response incorporates the integrated effect of all soil penetrated by the pile, as is the case for axial loading.

In view of the above, solutions for the torsional response of pile must endeavour to incorporate accurate modelling of the soil stiffness profile, and also pay appropriate attention to the gradual development of slip (relative twist) between pile and soil. The paper presents analytical and numerical solutions for the torsional response of piles embedded in non-homogeneous soil, where the stiffness profile follows a simple power law with depth. The solutions encompass: (1) vertical non-homogeneity of soil expressed as a power law; (2) non-linear soil response, modelled using a hyperbolic stressstrain law; (3) effect of relative slip between pile and soil for non-homogeneous stiffness and limiting shaft friction; (4) expressions for the critical pile slenderness ratio (or length) beyond which the pile head response becomes independent of the pile length.

The solutions are developed using a load transfer approach, with each soil layer acting independently from neighbouring layers, and are expressed in terms of Bessel functions of non-integer order, and as simple non-dimensionalised charts. The solutions are applied to two well-documented case histories in the latter part of the paper.  相似文献   


17.
艾智勇  成志勇 《岩土力学》2009,30(5):1522-1526
以层状地基内部作用一竖向集中力时的广义Mindlin解作为边界单元法的基本解,对层状地基中的轴向受荷单桩进行了分析,对基本解的奇异性处理方法进行了改进。考虑了桩的可压缩性和长径比对桩-土荷载传递规律和沉降特性的影响,编制了计算程序,并进行了数值分析和计算。结果表明,该方法具有较快的计算速度和良好的计算精度。  相似文献   

18.
A numerical method of analysis based on elasticity theory is presented for the analysis of axially and laterally loaded pile groups embedded in nonhomogeneous soils. The problem is decomposed into two systems, namely the group piles acted upon by external applied loads and pile–soil interaction forces, and a layered soil continuum acted upon by a system of pile–soil interaction forces at the imaginary positions of the piles. The group piles are discretized into discrete elements while the nonhomogeneous soil behaviour is determined from an economically viable finite element procedure. The load–deformation relationship of the pile group system is then determined by considering the equilibrium of the pile–soil interaction forces, and the compatibility of the pile and soil displacements. The influence of soil nonlinearity can be studied by limiting the soil forces at the pile–soil interface, and redistributing the ‘excess forces’ by an ‘initial stress’ process popular in elasto-plastic finite element analysis. The solutions from this approach are compared with some available published solutions for single piles and pile groups in homogeneous and nonhomogeneous soils. A limited number of field tests on pile groups are studied, and show that, in general, the computed response compares favourably with the field measurements.  相似文献   

19.
In a field, piles are likely installed in a multi-layered soil. Analysis of axially loaded piles in a multi-layered soil is complicated and deserves more attention. A boundary element method is used in this study to analyze an axially loaded single pile in a multi-layered soil using the solution for vertical and horizontal axisymmetric ring loads in a multi-layered elastic medium. Good and reasonable agreement is obtained between the proposed and published solutions for a single pile in a homogenous soil, a finite soil, and a Gibson soil. The proposed solution is also used to evaluate an axially loaded single pile in a multi-layered (8 layers) soil.  相似文献   

20.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号