首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Collected by means of a high-altitude scientific balloon and a self-made automatic sample collector,a total of 276 dust grains were selected for the study of shape,grain size and optical property.Some of the grains were examined by X-ray diffraction and electrom microprobe techniques,The stratospheric dust grains can be classified as 6 types:cosmic dusts,cosmic dusts(?),microtektite,natural pollutants,artificial pollutants and the unknown substances.The different types of dust grains have different characters and distinguishing symbols.Widespread in the space of the solar system,cosmic dusts are the initial substances of the solar system and ,to some degree,have recorded a great wealth of information on the early history of the solar system.So they have become one of the important objects in the field of cosmochemistry at present time,Since the 1960‘s,scholars of many countries have collected cosmic dusts both in the space near the earth(using rock ets,space probes and space shuttles)and in the stratosphere (using high-altitude balloons or U-2air planes).According to the shape(the scanning electron microimage),element composition(the energy-dispersive X-ray spectrum)and optical properties of dust grains,the substances in the stratosphere can be classified as 5 types:cosmic dusts,alumina spheroids,terrestrial artificial pollutants,terrestrial natural pollutants and unknown substances(CDPET,1982).  相似文献   

2.
On the basis of detailed geological studies of the Wulong gold deposit, three metallogenic stages can be identified. With quartz fluid inclusions as an object of study, the authors investigated phase characteristics, compositional variations, temperature and pressure changes, fluid evolution, Pb isotope tracing and Rb-Sr isotopic dating of fluid inclusions entrapped in the above three metallogenic stages. The results show that Na+ is decreased obviously with metallogenic evolution, while K+ and other cations and gas compositions (H2, CO, CH4 and CO2) are increased slightly, and that the temperature and salinity vary in a pulsating manner along with the metallogenic evolution. Inverse calculation of hydrogen and oxygen isotopes indicate that at the first metallogenic stage the fluids were magmatic water, at the second stage they were dominated by magmatic water with a minor amount of meteoric water involved, and at the third stage, i.e., the final stage of metallogenesis, the fluids were composed complete  相似文献   

3.
this work focuses on one of the critical points of Earth’s history when the Solar System passed through the most distant point of its galactic orbit. During this event, Earth may have suffered from maximum extension, associated with its relative proximity to the Sun at that time, followed by long-term contraction related to its later distancing. This paper is based on generalized data on the Cretaceous evolution of the Earth as a whole and of East Asia in particular. The evidence suggests that major geological processes at this time may be interpreted as transitional changes in the state of Earth. A liquid nature of its core may have reacted to the gravitational and electromagnetic transformations. When the cosmic changes took place at 135-120 Ma, more turbulent flows in the outer core would have favoured the rise of voluminous magmatic plumes and associated fluid flows. These would substantially transform the mantle, crust, hydrosphere, biosphere and atmosphere. In particular, plume-related melting of overlying subducting slabs and lower continental crust could have initiated numerous adakitic melts that formed the East Asian Adakitic Province. These and associated juvenile events produced numerous metallic ore, coal, gas and oil deposits. The Cretaceous is one of the most significant resource-producing periods.  相似文献   

4.
The Longbohe Cu deposit, which is located in the southern part of the Honghe ore-forming zone, Yunnan Province, China, belongs to a typical ore field where volcanic rocks are of wide distribution and are associated with Cu mineralization in time and space. The volcanic rocks in the ore field, which have experienced varying degree of alteration or regional metamorphism, can be divided into three types, i.e., meta-andesite, meta-subvolcanic rock and meta-basic volcanic rock in accordance with their mineral assemblages. These three types of volcanic rocks in the ore field are relatively rich in Na and the main samples plot in the area of alkali basalts in the geochemical classification diagram. With the exception of very few elements, these three types of volcanic rocks are similar in the content of trace elements. In comparison to the basalts of different tectonic settings, the meta-volcanic rocks in the ore field are rich in high field strength elements (HFSE) such as Th, Nb, etc. and depleted in large ion lithophile elements (LILE) such as Sr, Ba, etc. and their primary mantle-normalized trace element patterns show remarkable negative Th and Nb anomalies and negative Sr and Ba anomalies. These three types of volcanic rocks are similar in REE content range and chondrite-normalized REE patterns with the exception of Eu anomaly. Various lines of evidence show that these three types of volcanic rocks in the ore field have the same source but are the products of different stages of magmatic evolution, their original magma is a product of partial melting of the metasomatically enriched mantle in the tensional tectonic setting within the continent plate, and the crystallization differentiation plays an important role in the process of magmatic evolution.  相似文献   

5.
The mechanism of Nd.Ta-mineralixation is diseussed in the light of the properties of Nb-,Ta-complexes in different phases.Experiments show that Nb and Ta are essentially enriched in the melts when Nb-,Ta-bearing albite granites are completely melted(800-850℃)and in equilibrium with a HF-bearing vapor phase,It is also demonstrated from the experiments,that hydrolysis of Nb-,Ta-flourine complexes in aqueons solutions takes place with inereasing temperature,reaching a maximum value in the vicinity of critical temperature and becoming stable under supercritical conditions.Under this circumstance,Nb-,Ta-complexes can be trausported in the vapor phase,Ta exhibits a great,ability of transport in vapor phase as compared with Nb,while Nb is more soluble than Ta under hydrothermal conditions.The authors hold,on the basis of experiments and field observations,that Nb-,Ta-mineralixation is related to the proeess of crystllization-differentiation of lowmelting granitic magma which is rich in flourine.water and alkalis,as well as to the metasoatism during the late stage,pH ariation is also dealt with during Nb-.Ta-mineralization.  相似文献   

6.
Molar-tooth carbonate refers to a sort of rock that has ptygmatical folded structure comparable to the ivory. This kind of carbonate exists in a special time range (from Middle to Neoproterozoic). Its origin and the possibility to use it in stratigraphic correlation of the paleocontinent is the key task of the IGCP447, a project on Proterozoic molar tooth carbonates and the evolution of the earth (2001-2005). The importance lies in that the molar-tooth structure is the key to solving problems related to Precambrian biological and global geochemical events. The molar-tooth structure is associated with microorganisms. Development and recession of such carbonates have relations with the evolution process of early lives and abrupt changes in sea carbonate geochemistry. In recent years, based on researches on petrology, geochemistry and Sr isotope of molar-tooth carbonate in the Jilin-Liaoning and Xuzhou-Huaiyang area, the authors hold that it can be used as a marker for stratigraphic sequence and sedimentary  相似文献   

7.
Through a systematic study on trace elements and REE geochemistry of mudstone deposited in the basin and lower slope environments during Upper Proterozoic to Triassic in the Southwest Yangtze Mssif,three geochemical abnormal horizons of which the geochemical characteristics are quite different from those of other horizons have been established for the first time.They are the Lower Cambrian,the Upper Devonian and the Upper Permian,As compared with the crustal evolution in this area.these three geochemical abnormal horizons are corresponding to the pulling-apart periods of geotectonic cycles.which illustrates that uncommon depositional sources puring into the basin from the earth‘s interior may be one of the most important causes to originate the geochemical anomalies in these lhrizons.Thus it can be realized that the geochemistry of post-Archean sedimentary rocks has a great deal to do with the crustal evolution and it can be used as a tracer to analyze the crustal evolution.The elements in this area are mainly concentrated in these geochemical abnormal horizons,and the degree of enrichment and deficiency of trace elements in other horizons is very limited.A series of research on mineralization indicates that the main strata-bound ore deposits discovered in the Southwest Yangtze Massif occur in the Cambrian,Devonian and Permian-Trassic strata.The results of isotope tracer resarch have also proved that most of the metallogenic elements in these ore deposits came from the host strata.which illustrates that the geochemical abnormal horizons may have made great contributions to these ore-forming processes.Thus it can be concluded that it is only the particular horizons corresponding to the particular periode of earth‘s evolution that can they be the significant source beds because only in these uncommon horizons there can be highly enriched metallogeinc elements.which may be one of the most important reasons for explaining the time-bound nature of mineralization.  相似文献   

8.
The fundamental theoretical framework of the Multisphere Tectonics of the Earth System is as follows: (1) It intends to extend the geotectonic studies from the crustal and lithospheric tectonics to the multisphere tectonics of the Earth system as a whole. (2) The global dynamics driven by both the Earth system and the cosmic celestial system: solar energy, multispheric interactions of the Earth system and the combined effects of the motions of celestial bodies in the cosmos system are the driving forces of various geological processes. (3) The Continent-Ocean transformation theory: the continent and ocean are two opposite yet unified geological units, which can be transformed into each other; neither continent nor ocean will survive forever; there is no one-way development of continental accretion or ocean extinction; the simple theory of one-way continental accretion is regarded as invalid. (4) The continental crust and mantle are characterized by multiple layers, with different layers liable to slide along the interfaces between them, but corroboration is needed that continents move as a whole or even drift freely. (5) The cyclic evolution theory: the development of Earth’s tectonics is not a uniform change, but a spiral forward evolution, characterized by a combination of non-uniform, non-linear, gradual and catastrophic changes; different evolutionary stages (tectonic cycles) of Earth have distinctive global tectonic patterns and characteristics, one tectonic model should not be applied to different tectonic cycles or evolutionary stages. (6) The structure and evolution of Earth are asymmetric and heterogeneous, thus one tectonic model cannot be applied to different areas of the world. (7) The polycyclic evolution of the continental crust: the continental crust is formed by polycyclic tectonics and magmatism, rather than simply lateral or vertical accretion. (8) The role of deep faults: the deep fault zones cutting through different layers of the crust and mantle usually play important roles in tectonic evolution. For example, the present-day mid-ocean ridge fault zones, transform fault zones and Benioff zones outline the global tectonic framework. Different tectonic cycles and stages of Earth’s evolution must have their own distinctive deep fault systems which control the global tectonic framework and evolutionary processes during different tectonic cycles and stages. Starting from the two mantle superplumes Jason (Pacific) and Tuzo (Africa), the study of the evolutionary process of the composition and structure of the crust and mantle during the great transformation and reorganization of the Meso-Cenozoic tectonic framework in China and the other regions of Asia is a good demonstration of theory of Multisphere Tectonics of the Earth System.  相似文献   

9.
The pulsational characteristics of magmatic activity are discussed in terms of potyeyelcs, polyphases and polystagcs for Mesozoic granites from Ⅰ,Ⅱ, Ⅲ areas.Based on 141 rock analyses, 80 semiquantitative spectrographic analyses for the granites and 50 chemical analyses for beryllium, niobium and tantalum, the authors present pertinent diagrams and petrochemical-geoehemical parameters which bring out the periodic variations in the bulk chemical composition of the rocks as wen as the periodicity of rare metal mineralization during the differentiation and evolution of Mesozoic granitic magmas. It is noted that the mineralization of lithium, beryllium, niobium and tantalum took place principally at later stages of each magmatic cycle. A camparison of the petrochemical-geochemical characteristics between granites east and west of the L-R Fault has led to the recognition of two different granite areas and two geochemical provinces for beryllium.  相似文献   

10.
Palygorskite is a typical indicator mineral of the arid and strong evaporation environment. Distribution of palygorskite in loess-red clay sequences may act as an important indicator for reconstruction of the paleoenvironment and paleoclimate. In this paper, field emission scanning electron microscope and high-resolution transmission electron microscope observations on the red clay-loess-paleosol of the Renjiapo profile at Lingtai, Gansu Province indicate that palygorskite occurs widely in red clay sequences formed before 3.6 Ma, but no occurrence has been found in eolian sediments since 3.2 Ma. Micromorphological features and microstructure of palygorskite show that it is an autogenic mineral formed during pedogenesis, and transformed from iilite-montmorilionite under the pore water action. In the Lingtai profile, the disappearance horizon of palygorskite is consistent with those of increasing magnetic susceptibility, dust flux and depositional rate. The distribution of palygorskite in the profile indicates that the interval of around 3.6 Ma was an important transformation period of the East Asian paleomonsoon, when changes took place in the East Asia paleoclimate pattern, i.e. a high-frequency strong fluctuation alternative evolution of the environment. Therefore, palygorskite is a key indicator mineral of the East Asian paleomonsoon evolution of that time.  相似文献   

11.
新地球观   总被引:11,自引:0,他引:11  
One of the most important achivements on science in 20th century is the new recognition on the Earth:the Earth,out of the other planets, exhibits very peculiar features because it has an extremely complex and active periphery part (surfacial layers). This periphery part is an open system sustained by inputting solar energe , which is captured , transfered and stored by life. Through the system , cyclings of matters and energe flow are driven and regulated by life activities. This system is self-equilibrated,self-controlled and far away from astrophysical and thermodynamic equilibria mainly because of life and life activities.
Development of human calture influences increasingly on流Earth's periphery system , at last , the natural biosphere that has existed for 3 billion years on the Earth's surface will inavoidably be replaced by so called "noosphere",which is man一reconstructed,man-controlled and unstable system. Thus the fate of the Earth,to a great extent,will be determined by the direction of human calture evolution.
  相似文献   

12.
The primary concern of this paper is with the characteristics and origin of oreforming elements, the effects of various low and high energy nuclear processes on the evolution of the earth, interpretation of the variation in stable isotopic compositions in nature and its implications. The current status of isotopic geology study in China is reviewed followed by some prospects for its further development.  相似文献   

13.
The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation.The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS).The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes,proximal in time but distant in space,may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors.The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity,with the largest events occurring in pairs,one shortly after another,on two ends of the rift system and with couples of smaller events in the central part of the rift.The event couples appear as peaks of earthquake ‘migration' rate with an approximately decadal periodicity.Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation.The new knowledge,with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis,may be of theoretical and practical value for earthquake prediction issues.Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region,i.e.,there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.  相似文献   

14.
正In the new era of earth system science in conjunction with the digital revolution,new platforms and programs are required for facilitating the utilization of geoscience data,especially to improve the integration of structured data with unstructured data for solving complex problems.Big data is not just matter of size but most importantly how easily and effectively it can be used.A major goal is to facilitate a move from traditional scientific approaches to a more modern approach that involves big data  相似文献   

15.
Q.M.Peng 《《幕》》2004,27(2):148-149
In recent years, the study of mantle plumeshas become a “hot spot” in earth sciences;enormous papers and data have been published, and many mantle plume-related questions have arisen: Did mantle plumes in the Precambrian behave the same way as they do today? What are the roles of plumes in the evolution of the earth? What are the effects of mantle plumes on global changes and metallogenesis? These issues are frequently encountered and hotly debated in a wide range of earth science fields such as tectonics geochemistry, geophysics, metallogenesis,  相似文献   

16.
The Puguang (普光) gas field is the largest gas field found in marine carbonates in China.The Feixiangnan (飞仙关) and Changxing (长兴) reservoirs are two such reservoirs that had been buried to a depth of about 7 000 m and experienced maximum temperature of up to 220 ℃ before uplift to the present-day depth of 5 000-5 500 m,with present-day thermal maturity between 2.0% and 3.0% equivalent vitrinite reflectance (Ro).Bitumen staining is ubiquitous throughout the Feixianguan and Changxing formations,with the greatest concentrations in zones with the highest porosity and permeability,suggesting that the solid bitumen is the result of in-situ cracking of oil.According to the distribution of bitumen in the core,the paleo-oil boundary can be approximately determined.The paleo-oil resource is calculated to be about (0.61-0.92)×109 t (average 0.76×109 t),and the cracked gas volume is about (380.80-595.80)×109 m3 (average 488.30×109 m3); at least 58.74% of cracked gas is preserved in Puguang gas field.The study area experienced not only the cracking of oil but also thermochemical sulfate reduction,resulting in large quantities of nonhydrocarbon gas,with about 15.2% H2S and 8.3% CO2,together with the structural reconfiguration.During the whole process,the great change of volume and pressure compels the PVTsim modeling software to simulate various factors,such as the cracking of oil,the thermochemical sulfate reduction (TSR) and the tectonic uplift in both isolated and open geological conditions,respectively.The results show that although any one of these factors may induce greater pressure changes in an isolated system than in a closed system,the oil cracking and C3+involving TSR lead to overpressure during the early stage of gas reservoir.Therefore,the tectonic uplift and the methane-dominated TSR,as well as the semi-open system contribute to the reducing pressure resulting in the current normal formation pressure.  相似文献   

17.
Metallogenic Effect of Transition of Tectonic Dynamic System   总被引:13,自引:0,他引:13  
Tectonic dynmnic system transition, one of the main factors in metallngenesis, controls metallogenic fluid movement and ore body location in orefields and on an ore deposit scale (mainly in the continental tectonic setting), and even the formation and distribution of large-scale deposit clusters. Tectonic dynamic system transition can be classified as the spacious difference of the tectonic dynamic system in various geological units and the temporal alteration of different tectonic dynamic systems. The former results in outburst of mineralization, while the latter leads to the metallogenic diversity. Both of them are the main contents of metallogenic effect of tectonic dynamic system transition, that is, the alteration of dynamic system, the occurrence of mineralization, and the difference of regional tectonic dynamic system and metallogenic diversity. Generally speaking, the coupling of spatial difference of tectonic dynamic system and its successive alternation controlled the tempo-spatial evolution regularity of mineralization on a larger scale. In addition, the analysis of mineralization factors and processes of typical ore deposits proved that the changes of tectonic stress field, the direct appearance of tectonic dynamic system transition, way lead to the accident of mineralization physical-chemical field and the corresponding accidental interfaces were always located at ore bodies.  相似文献   

18.
Rubidium (Rb) deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites. This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet. Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization. LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1 ± 0.2 Ma and 19.0 ± 0.2 Ma for greisenized monzogranite and fresh monzogranite, respectively. The monzogranites are characterized as strongly peraluminous, with high contents of SiO2, Al2O3, K2O and Na2O as well as a high differentiation index. They are enriched in light rare earth and large ion lithophile elements with signi?cant negative Eu anomalies and depleted high field-strength elements. Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites, derived from remelting of crustal materials in a post-collisional setting. The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma’s evolution. The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization.  相似文献   

19.
Detailed studies have been conducted on the geology and geochemistry of the deposit and granite in the mining district in the last two decades, and by comparing this deposit with other typical epithermal deposits in the world, it is clear that the Erentaolegai silver deposit is a lower-sulfidation, adularia-sericite-type epithermal silver deposit and the bulk mineralogy of this deposit is consistent with low-sulfidation epithermal mineralization. Determined by the Rb-Sr isochron method, the age of magmatic intrusives in the mining district is 120 Ma. So, it can be concluded that the local areas were marginally subjected to the movement in Late Yanshanian and produced granitic magma, and about 29% mantle material, as is calculated, was involved in magmatism. The magma experienced crystallization-differentiation, resulting in the formation of granite and quartz porphyry; the latter was the product of violent granitic magma crystallization-differentiation, so silver was enriched in later petrogenetic stages and post-petrogenetic ore fluids from which Ag was derived dominantly. Oxygen and hydrogen isotopic characteristics indicate that meteoric waters on the Earth‘ s surface played an important role in the formation of granitic magma and the deposit: ( 1 ) contributing a lot to the fundamental complex partial melting;(2) contributing a lot to magma crystallization-differentiation, and bringing silver into the magma which is eventually responsible for the formation of quartz porphyry; and (3) contributing a lot to the formation of great amounts of ore fluid. The lead isotopic characteristics show that the silver and lead have an affinity for each other.  相似文献   

20.
梁波  王家东  葛建军  曹元平 《冰川冻土》2004,26(Z1):241-247
Considering the only retaining structure L-type retaining wall used in Golmud-Lhasa section of Qinghai-Tibet Railway, the earth pressure and frost-heaving force was tested in a frost-thaw circle for one year, and several different analysis models were studied. Compared with site test and theory analysis, it was found that the actual earth pressure is much larger than the designed earth pressure. Hence,a revised analysis model of earth pressure is put forward, which could include another possible force except slide triangle or frost heaving force. The model in this paper is only consider the thrust force other than failure sliding wedge. This model could be used as reference for the design and construction of similar projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号