首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
与传统CCD (Charge Coupled Device)相机相比, s COMS (scientific Complementary Metal Oxide Semiconductor)相机被广泛装备于超大天区巡天设备,与传统CCD相机不同的是sCMOS相机采用卷帘式快门,因此对其进行测光精度的分析工作是很有意义的.首先,将s CMOS相机拍摄的图像与UCAC2 (The Second U.S. Naval Observatory CCD Astrograph Catalog)星表进行匹对,识别图像中的UCAC2标准星.接着对图中的标准星进行测光并提取测光数据进行最小二乘直线拟合,获得了相应的系统转换系数并得到仪器星等至标准星等的转换公式.然后,将转化后的仪器星等和标准星等做差并计算相应的均方根误差.最后,利用计算得到的均方根误差评估sCMOS相机的测光精度,并将标准星按星等划分后,分析了相应的测光误差.计算结果表明在标准测光夜测量亮度亮于14等的星时,测光精度优于0.15 mag.通过实测精度分析可知卷帘快门sCOMS相机具有较高的测光精度,基本满足空间碎片巡天观测的要求.  相似文献   

2.
黑洞暂现双星MAXI J1820+070于2018年3月的明亮爆发为研究光学快速测光能力提供了重要机遇. 以快速光学相机(Fast Optical Camera, FOC)为终端设备分别在2018年4月22日、5月26日和8月31日(UTC)使用云南天文台丽江观测站2.4m望远镜对爆发中的黑洞双星MAXI J1820+070进行了亚秒时标的测光观测. 通过观测数据分析, 研究了相机的快速测光性能.对全帧和1/4帧两种观测模式的帧间间隔(frame time), 测得平均帧间间隔为(22.866 pm 0.679)ms和(5.868 pm 0.169)ms. 通过视场中多颗明亮参考源校准,提取了观测对象和参考源的光变曲线, 获得了光变曲线的傅里叶功率谱, 区分了观测对象本征光变和仪器或望远镜等观测因素带来的非本征光变, 成功探测到目标黑洞双星MAXI J1820+070中的光学波段低频准周期振荡信号, 并判别了观测中来自仪器设备或与观测条件相关的时变信号. 这成功验证了相机高速稳定的测光性能和对短至5ms时标光变信号的探测能力.  相似文献   

3.
利用云南天文台1.2m望远镜多色测光系统,选取一批Landoh标准星,利用较差测量的方法对该系统进行了大气消光系数和仪器转换系数的测定,分析了这套新的测光系统的性能.计算结果表明本系统与Johnson标准测光系统非常接近.同时也对该系统的测光精度进行了测定,在标准测光夜下测量亮于13.5等的星时,其V波段测光精度可达到0.041星等.  相似文献   

4.
高精度恒星孔径测光注释   总被引:2,自引:0,他引:2  
详细介绍了利用孔径测光方法得到CCD图像中恒星仪器星等的全过程,以及使用自己设计的程序对云南天文台1m望远镜观测的CCD图像进行实际测量的实验。测量结果表明:对亮星(约10mag)的内部测量精度能达到0.003mag,而对暗星(约17mag)达到0.2mag。同时,对相关问题进行深入讨论,总结了一些实验所得的经验,并与测光软件IRAF进行了内部精度的比较。  相似文献   

5.
系外行星直接成像探测能够获取系外行星更全面的物理信息,是未来搜寻系外生命的关键技术之一.针对近期地基望远镜高对比度成像观测数据,对新发现的多星候选体进行系统展示.前期,结合地基系外行星高对比度成像设备观测能力,从已发表文献整理的Gaia星表恒星数据中筛选,得到约1000个观测目标.这些目标分布于不同的年轻星团中.近期,使用Palomar天文台Hale望远镜对上述观测目标中的42个目标在K波段开展了高对比度成像观测.这些目标恒星在可见光波段为7.5-14.2019年经过两轮观测,发现了6个多星系统候选体,这些目标在Gaia Data Release 2星表和Gaia early Data Release 3星表中难以确认是单星还是多星系统.  相似文献   

6.
系外类地行星空间探测计划(Search for Terrestrial Exo-Planets,以下简称"STEP")采用天体测量法和微像素级焦平面定标测量技术,设计望远镜焦平面检测精度达到1μas.在假定焦平面设计能达到检测精度的前提条件下,系统分析了恒星自行、视差、卫星速度和位置、光学系统的光心等关键因素对检测系外行星的影响.有别于传统的窄视场照相底片常数法,提出了一种恒星相对角距测量方法,以检测由于可能存在的系外行星而引起星对角距变化的非线性项,消除了传统窄视场天体测量中参考星位置和自行精度对检测系外行星的直接影响.针对同一天区内的8颗参考星和1颗具有行星系统的待测星,分别模拟出5 yr内的观测数据,利用最小二乘法进行处理,发现基于STEP自身1μas的观测精度,在这种情况下是可以观测到类地行星的.  相似文献   

7.
对兴隆60cm望远镜主焦CCD系统的测光性能进行了测试和研究.测定了CCD快门时间函数,讨论了快门延迟效应对短时间曝光观测的可能影响.通过观测大批Landolt标准星,较准确地定出了BVRI宽带测光的星等系统转换关系,结果表明本系统与标准BVRI系统很接近.对CCD系统的天文测光精度作了仔细的检验和分析,并对PSF拟合测光和孔径测光两种方法进行了比较  相似文献   

8.
对兴隆60cm望远镜主焦CCD系统的测光性能进行了测试和研究,测定了CCD快门时间函数,讨论了快门延迟效应对短时间曝光观测的可能影响,通过观测大批Landolt标准星,较准确地定出了BVRI宽带测光的星等系统转换关系,结果表明本系统与标准BVRI系统很接近,对CCD系统的天文测光精度作了仔细的检验和分析,工对PSF拟合测光和孔径测光两种方法进行了比较。  相似文献   

9.
基于有效点扩散函数的高精度测光   总被引:1,自引:0,他引:1  
介绍了利用有效点扩散函数拟合方法得到CCD图像中恒星仪器星等的过程。对国家天文台1 m望远镜观测的16幅CCD图像进行实际测量,结果表明:亮星的内部测量平均精度为0.015 mag,最高精度可达0.001 5 mag,而暗星则达到0.043 mag。与Gauss拟合测光方法相比平均精度提高了3倍多,精度标准偏差是0.005,说明该测量方法比较稳定,是一种更优的测光方法。  相似文献   

10.
位于吉林天文观测基地的280 mm全天区可转动光电阵是一台用于空间碎片巡天观测的设备。为了研究该设备的光度测量性能,评估其测光精度,选择M67疏散星团中的测光标准星进行观测。首先,在IRAF(Image Reduction and Analysis Facility)中对观测图像进行预处理,之后进行较差测光;接着,提取测光数据并将整晚观测数据进行最小二乘直线拟合,拟合结果给出了主消光系数及相应的系统转换系数,并得到仪器星等至标准星等的转换公式;最后,利用计算得到的均方根误差对设备的测光精度进行大致评估。计算结果表明,在标准测光夜测量亮于13.8 mag时,280 mm全天区可转动光电阵的测光精度可达0.13 mag。同时将观测图像与UCAC2星表匹配识别,利用背景恒星中的UCAC2标准星做外符合精度的校验,结果与前者基本相同。本设备的测光精度基本满足空间碎片巡天观测的要求。  相似文献   

11.
CoRoT (Convection, Rotation and Transit) is a mission of high-accuracy photometry with two scientific programmes: asteroseismology and planet finding, using CCDs as detectors. Ten 2048×4096 CCDs manufactured by E2V (42-80) were calibrated on Meudon test bench in order to choose the best ones for flight. A very high instrument stability is needed. Taking into account the environmental perturbations (temperature, attitude control system jitter, radiations, etc.) we studied sensitivity of CCD gain and quantum efficiency to temperature and sensitivity of the output signal to bias voltages. Special attention was paid to pixel capacity and noise sources coming from dark current and pixel response non-uniformity. The calibration results together with the expected voltages and temperature fluctuations are compared with the specifications.  相似文献   

12.
We present high-precision K -band photometry of the transit and secondary eclipse of extrasolar planet OGLE-TR-113, using the SOFI near-infrared instrument on European Southern Observatory's New Technology Telescope. Data were taken in 5-s exposures over two periods of 3–4 h, using random jitter position offsets. In this way, a relative photometric precision of ∼1 per cent per frame was achieved, avoiding systematic effects that seem to become dominant at precisions exceeding this level, and resulting in an overall accuracy of 0.1 per cent per ∼10 min. The observations of the transit show a flat-bottomed light-curve indicative of a significantly lower stellar limb darkening at near-infrared than at optical wavelengths. The observations of the secondary eclipse result in a 3σ detection of emission from the exoplanet at 0.17 ± 0.05 per cent. However, residual systematic errors make this detection rather tentative.  相似文献   

13.
For the time-domain astronomical research, the optical telescopes with a small and medium aperture can get a huge amount of data through automatic sky surveying. A certain proportion of automatically acquired data are interfered by clouds, which makes it very difficult to automatically extract the dim objects and make photometry. Therefore, it is necessary to identify and extract clouds from these images as the index figures for a reference in the subsequent information extraction. In this paper, an astronomical image selection system based on the support vector machine is proposed, which sets the gray value inconsistency and texture difference as the reference to select the images interfered by clouds. Based on the classification results, by through the histogram transformation and feature selection, the index figures of clouds can be further extracted. The experimental results show that our method can achieve the real-time selection of astronomical images with a classification accuracy better than 98%. By the histogram transformation and feature selection the index figure of clouds can be preliminarily extracted as the references for the photometry and dim object extraction.  相似文献   

14.
Fluctuations in the brightness of the background radiation can lead to confusion with real point sources. This type of confusion with background emission is relevant when making infrared (IR) observations with relatively large beam sizes, since the amount of fluctuation tends to increase with the angular scale. To quantitively assess the effect of the background emission on the detection of point sources for current and future far-IR observations by space-borne missions such as Spitzer , ASTRO-F , Herschel and Space Infrared Telescope for Cosmology and Astrophysics ( SPICA ), we have extended the Galactic emission map to a higher level of angular resolution than that of the currently available data. Using this high-resolution map, we estimate the sky confusion noise owing to the emission from interstellar dust clouds or cirrus, based on fluctuation analysis and detailed photometry over realistically simulated images. We find that the confusion noise derived by simple fluctuation analysis agrees well with the results from realistic simulations. Although sky confusion noise becomes dominant in long wavelength bands  (>100 μm)  with 60–90 cm aperture missions, it is expected to be two orders of magnitude lower for the next generation of space missions (with larger aperture sizes) such as Herschel and SPICA .  相似文献   

15.
Exoplanetary transit and stellar oscillation surveys require a very high precision photometry. The instrumental noise has therefore to be minimized. First, we perform a semi‐analytical model of different noise sources. We show that the noise due the CCD electrodes can be overcome using a Gaussian PSF (Point Spread Function) of full width half maximum larger than 1.6 pixels. We also find that for a PSF size of a few pixels, the photometric aperture has to be at least 2.5 times larger than the PSF full width half maximum. Then, we compare a front‐ with a back‐illuminated CCD through a Monte‐Carlo simulation. Both cameras give the same results for a PSF full width half maximum larger than 1.5 pixels. All these simulations are applied to the A STEP (Antarctica Search for Transiting Extrasolar Planets) project. As a result, we choose a front‐illuminated camera for A STEP because of its better resolution and lower price, and we will use a PSF larger than 1.6 pixels. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We report on our follow‐up spectroscopy of HD 1071478 B, a recently detected faint co‐moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35″ (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co‐moving companion, we obtained follow‐up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56 ± 0.05 M, a luminosity of (2.0 ± 0.2) × 10–4 L, log g [cm s–2]) = 7.95 ± 0.09, and a cooling age of 2100 ± 270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
This paper is primarily an investigation of whether the 'optimal extraction' techniques used in CCD spectroscopy can be applied to imaging photometry. It is found that using such techniques provides a gain of around 10 per cent in signal-to-noise ratio over normal aperture photometry. Formally, it is shown to be equivalent to profile fitting, but offers advantages of robust error estimation, freedom from bias introduced by mis-estimating the point spread function, and convenience. In addition some other techniques are presented, which can be applied to profile fitting, aperture photometry and the 'optimal' photometry. Code implementing these algorithms is available at http://www.astro.keele.ac.uk/~timn/.  相似文献   

18.
The probability of the detection of Earth-like exoplanets may increase in the near future after the launch of the space missions using the transit photometry as observation method. By using this technique only the semi-major axis of the detected planet can be determined, and there will be no information on the upper limit of its orbital eccentricity. However, the orbital eccentricity is a very important parameter, not only from a dynamical point of view, since it gives also information on the climate and the habitability of the Earth-like planets. In this paper a possible procedure is suggested for confining the eccentricity of an exoplanet discovered by transit photometry if an already known giant planet orbits also in the system.  相似文献   

19.
Given a set of images, whose pixel values can be considered as the components of a vector, it is interesting to estimate the modulus of such a vector in some localized areas corresponding to a compact signal. For instance, the detection/estimation of a polarized signal in compact sources immersed in a background is relevant in some fields like astrophysics. We develop two different techniques, one based on the Neyman–Pearson lemma, the Neyman–Pearson filter (NPF), and another based on pre-filtering before fusion, the filtered fusion (FF), to deal with the problem of detection of the source and estimation of the polarization given two or three images corresponding to the different components of polarization (two for linear polarization, three including circular polarization). For the case of linear polarization, we have performed numerical simulations on two-dimensional patches to test these filters following two different approaches (a blind and a non-blind detection), considering extragalactic point sources immersed in cosmic microwave background (CMB) and non-stationary noise with the conditions of the 70 GHz Planck channel. The FF outperforms the NPF, especially for low fluxes. We can detect with the FF extragalactic sources in a high noise zone with fluxes      Jy for (blind/non-blind) detection and in a low noise zone with fluxes      Jy for (blind/non-blind) detection with low errors in the estimated flux and position.  相似文献   

20.
Many different methods exist for reducing data obtained when an astronomical source is studied with a two-channel polarimeter, such as a Wollaston prism system. This paper presents a rigorous method of reducing the data from raw aperture photometry, and evaluates errors both by a statistical treatment, and by propagating the measured sky noise from each frame. The reduction process performs a hypothesis test for the presence of linear polarization. The probability of there being a non-zero polarization is obtained, and the best method of obtaining the normalized Stokes Parameters is discussed. Point and interval estimates are obtained for the degree of linear polarization, which is subject to positive bias; and the polarization axis is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号