首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南黄海浮游植物季节性变化的数值模拟与影响因子分析   总被引:26,自引:1,他引:25  
用三维物理-生物耦合模式研究南黄海浮游植物(以叶绿素a为指标)的季节变化.对于物理模式采用Princeton ocean model(POM),对于生物模式考虑溶解无机营养盐(氮、磷、硅)、浮游植物、食草性浮游动物和碎屑.给定已知的初始场和外加边界强迫,模拟了观测到叶绿素a的主要时、空分布特征,如浮游植物的春、秋季水华和夏季次表层叶绿素a极大值现象等.研究表明,浮游植物春季水华最先发生于黄海中央海域,主要原因是该海域透明度较高,流速较小.春季水华开始于垂直对流减弱和层化开始形成之前(约3月底至4月上旬),显著地依赖水层的稳定性.水体层化以后(约5~9月)叶绿素a浓度高值区分布在南黄海的南部和锋区.夏季的南黄海中央海域,由于上混合层营养盐几乎耗尽,限制了浮游植物的生长,在紧贴温跃层下部的真光层,具有丰富的营养盐和合适的光照,次表层叶绿素a极大值得以形成.秋季(约9~11月份,略迟于海表面开始降温的时间,随地点不同而异)随垂直混合的增强,有利于营养盐向上输运,浮游植物出现一次较小的峰值.  相似文献   

2.
北冰洋浮游生物空间分布及其季节变化的模拟   总被引:3,自引:1,他引:2  
低营养级浮游生物生态动力过程对环境变化的响应非常敏感。随着全球气候变化加剧,北冰洋正在经历快速的环境变化。厘清北冰洋低营养级浮游生物季节分布与变化特征是探究北冰洋生态系统对环境快速变化响应的前提,也是评估北极海区固碳能力的重要依据。基于此,本文构建了海洋–海冰–生物地球化学循环模型,并对北冰洋叶绿素浓度以及浮游生物结构的时空变化特征进行了模拟,结果表明:(1)北冰洋表层叶绿素浓度的峰值主要出现在5月,且太平洋一侧叶绿素浓度高于大西洋一侧;随着海水层化,表层受营养盐限制的海区呈现次表层叶绿素浓度最大值现象,且由陆架向海盆,次表层叶绿素浓度最大值层逐渐加深;9月,叶绿素浓度高值重回水体上层,太平洋一侧海区表层叶绿素浓度呈现较为明显的次峰值。(2)由于太平洋和大西洋入流营养盐浓度及结构的不同,北冰洋表层浮游生物群落结构存在明显空间差异。太平洋一侧,硅藻和中型浮游动物占优,硅藻在5月和9月出现生物量峰值,微型浮游植物在3月、5月和6月维持相对较高生物量;而大西洋一侧,在早春-春末夏初-夏秋经历了微型浮游植物-硅藻-微型浮游植物的演替,总体而言,微型浮游植物和微型浮游动物占优。此外,两侧海区浮游动物浓度峰值相较浮游植物滞后约半月。  相似文献   

3.
渤海冬夏季营养盐和叶绿素a的分布特征   总被引:18,自引:0,他引:18  
在2000年8月和2001年1月对渤海进行的两个航次的调查取样的基础上,分析渤海营养盐和叶绿素a的分布特征,各海区营养盐的结构以及营养盐和叶绿素a的关系。结果表明,冬季营养盐的浓度高于夏季,硅酸盐有明显的垂向结构,40多年来渤海中部硝酸盐呈现增加趋势;莱州湾浮游植物生长处于磷限制,其它海区处于氮限制;冬季叶绿素a的浓度也高于夏季,叶绿素a的季节差异可能与夏季浮游动物对浮游植物的大量摄食有关。  相似文献   

4.
广东南澳岛近海是我国龙须菜养殖的重要基地。为了探究龙须菜养殖对藻华防治的贡献,分别于2016年3月、5月和6月在广东南澳岛北部海域不同养殖功能海区进行采样,研究龙须菜养殖前后海水中营养盐含量和结构的变化,分析不同粒径的浮游生物对有机营养盐的水解利用,探讨龙须菜养殖对浮游植物竞争利用营养盐和生长产生的影响。结果表明,研究海区水质较清洁,无机氮磷含量较低,春季至夏季,随着龙须菜和浮游植物生物量增加,溶解无机磷(dissolved inorganic phosphorus,DIP)浓度不断下降,至6月南澳海区成为磷限制海域。在5月龙须菜生长高峰期,龙须菜养殖区和龙须菜鲍鱼混养区的DIP浓度显著低于鲍鱼区和非养殖区,龙须菜养殖区的叶绿素a浓度明显低于其他区域,亮氨酸氨肽酶(leucine amino peptide,LAP)和碱性磷酸酶(alkaline phosphatase,AP)活性显著升高,表明龙须菜养殖区浮游植物受到较为明显的营养胁迫。而龙须菜收割后,该养殖区的叶绿素a含量则显著上升,甚至高于其他区域。该结果表明在南澳岛海域,龙须菜养殖通过营养竞争关系(尤其是磷)抑制浮游植物的生长,大规模龙须菜养殖可能有助于抑制有害藻华的发生。  相似文献   

5.
唐松 《海洋科学》2010,34(7):34-40
借助"中国首次环球科学考察航次",在印度洋海区进行了N、Fe、N+Fe以及N+Fe+P的营养盐添加模拟实验。通过对实验过程中水体营养盐浓度、叶绿素a(Chl-a)浓度以及温度等参数进行分析,探讨了添加不同营养盐对该实验海区浮游植物生长的影响。结果表明,N的添加会引起浮游植物的快速爆发,而单独添加Fe并不能刺激浮游植物快速生长,N、P联合作用对浮游植物生长的影响远远大于单独N的作用。另外,在实验海区浮游植物优先利用海水中的硝酸盐,在硝酸根耗尽后,海水中可被利用的P会促进浮游植物的生长。实验过程中水体N/P比值的变化同叶绿素a浓度以及浮游植物生长速度(R)没有可对比性,而且N/P比值与后两者之间的相关性都差,所以认为水体中N/P比值并不能单独决定浮游植物生长。此外,实验水体温度同Chl-a浓度和R值之间相关性分析表明,水体温度虽对浮游植物生长有重要作用,但不能控制浮游植物生长。  相似文献   

6.
2010年10月,对渤海湾西南部海域典型站位表层水体进行了模拟现场的营养盐加富培养实验。初始状态下,培养水样中溶解无机氮浓度为20.68μmol/L,磷酸盐浓度0.24μmol/L,硅酸盐浓度4.58μmol/L,叶绿素a浓度为1.05μg/L,浮游植物细胞密度为1 080 cells/L。通过改进实验设计,研究了该水样的营养盐限制类型、水样中浮游植物对不同氮磷比以及不同硝酸盐添加方式的生态响应。实验结果表明,在单一添加营养盐的各组中,添加磷酸盐的1-3组叶绿素a浓度和浮游植物细胞密度的增长状况最显著,1-3组叶绿素a浓度峰值为空白对照组1-1组的2.48倍,达到营养盐全加组1-5组同期浓度的48%,其细胞密度峰值为1-1组的1.66倍,达到1-5组同期密度的72%,该水样为磷限制。在实验条件下,浮游植物的增长在总体上随着氮磷比的降低而增大,最适宜的氮磷比为5-15左右,略低于Redfield比值16。硝酸盐的连续性添加比一次性添加更有利于浮游植物的生长,暗示了低浓度长期持续性氮污染可能会比高浓度冲击性氮污染更有效地刺激浮游植物的增长,从而造成更严重的生态问题,而此时用以往的一次性添加培养实验可能会低估浮游植物的增长潜力。  相似文献   

7.
借助"中国首次环球科学考察"航次,在东太平洋表层海水进行了添加氮、磷的现场培养实验。现场记录了实验水体温度的变化,用分光光度法对水体硝酸氮和活性磷酸盐浓度进行了检测,并用荧光法分析了水体叶绿素a浓度。结果表明,氮的添加会引起水体中叶绿素a浓度短期内快速增大,同时伴随硝酸盐浓度的显著降低,而单独添加P对水体中叶绿素a浓度影响并不显著;水体中N/P比值与叶绿素a浓度、N/P比值与浮游植物生长速度、温度与叶绿素a浓度以及温度与浮游植物生长速度之间均缺乏相关性。因此认为,在东太平洋实验海区表层海水中添加氮会引起浮游植物快速爆发,而磷的添加并不能刺激浮游植物快速生长,水体N/P比值和水体温度都不能单独控制浮游植物群落的生长。  相似文献   

8.
首次通过2008-2009年在西北地中海和东地中海海域投放的两台Bio-Argo浮标的观测数据,分析与研究了该海区黄色物质次表层极大值的季节变化规律.研究表明次表层黄色物质在夏季开始爆发,伴随着叶绿素a浓度的逐渐降低;到冬季在强烈的垂向混合作用下结束.且黄色物质极大值的深度与叶绿素a浓度极大值(DCM)的深度基本一致,说明虽然黄色物质与浮游植物之间并不存在直接联系,但浮游植物的降解是黄色物质的主要来源.文中推测,可能由于该海区浮游植物与微生物的强耦合,导致了黄色物质与叶绿素a之间存在明显的反变关系.  相似文献   

9.
南海东北部是寡营养海域,夏季浮游植物叶绿素浓度较低,热带气旋“风泵”效应带来的上层海洋扰动可能引起表层浮游植物的显著增长。以往的研究通常关注热带气旋风应力和海洋中尺度涡对上层海洋浮游植物的影响,本文利用航次CTD、实测叶绿素a浓度、Argo温盐剖面和遥感数据,探讨了台风“风泵”和黑潮共同作用下真光层内浮游植物的变化特征及其成因。结果表明,2015年台风“莲花”过境1周后产生向吕宋海峡西北侧南海海域(A区)入侵的黑潮流套,该入侵的黑潮流套使台风前原有的气旋涡消失,抑制了台风产生的上升流对表层(0~40 m)营养盐供给,使次表层(60~90 m)营养盐富集,进而抑制了表层的叶绿素a增长,促进了次表层叶绿素a的增长;吕宋海峡西侧南海海域(B区)表层的浮游植物叶绿素a浓度增加不仅是源于叶绿素最大层浮游植物的向上输运,更是由于浮游植物的繁殖增长;A区台风引起的流套式的黑潮入侵,促进了B区台风后气旋式流场的形成,产生的持续增强的气旋涡为B区表层叶绿素持续增长提供了充足的营养盐供给。  相似文献   

10.
三门湾夏季浮游植物现存量和初级生产力   总被引:1,自引:0,他引:1  
该海区的生物、化学、水文等项目进行调查。用HQM-1型有机玻璃采水器采集水样,大面观测站仅采集表层(0~1m)水样,用于测定叶绿素a质量浓度和光合作用速率。在N2和N11两个连续观测站,每隔3h采集表层和5m层的水样,用于分析叶绿素a质量浓度及营养盐浓度。同时,用浅 型浮游生物网由近底层向表层垂直拖网采集浮游植物样品,所采样品被装入容积为600cm3的塑料瓶中,并加入20cm3的福尔马林溶液固定保存,供对浮游植物细胞计数和种属鉴定之用。营养盐样品用经酸预清洗过的孔径为0.45μm的醋酸纤维膜过滤,滤液用饱和HgCl2溶液固定后,低温避光保存。图…  相似文献   

11.
通过楚科奇海北部–加拿大海盆西侧交接地带的生态调查,我们发现0~150 m海域水体中以融冰水(MW,0~20 m)、白令海夏季水(s BSW)和阿拉斯加沿岸流(ACW)等水团为主。水温和营养盐变化与水团息息相关,物理–生化的耦合作用进一步影响了浮游植物分布和群落结构。叶绿素a浓度最大值多位于约50 m深、富含营养盐的s BSW和ACW暖水团中。sBSW和ACW中分别以小型(占比约74%)和微微型(占比约65%)浮游植物为主。藻华初期,溶解无机氮(DIN)虽呈相对限制状态,但仍高于浮游植物生长所需阈值。双单元混合模型显示:浮游植物对氮去除明显,氮吸收量与叶绿素a浓度呈正比,且在温度略高的ACW水团中氮吸收量高于s BSW水团。在北极变暖、波弗特流涡增强以及ACW和sBSW营养盐补给下,该区域的浮游植物的叶绿素a浓度(均值:(0.327±0.163)mg/m3,范围:0.04~0.69 mg/m3)与历史数据相比有所提高。这将增加北极海区的碳吸收通量,有利于其作为碳汇区的发展。  相似文献   

12.
根据2005年4-5月(春季)、8月(夏季)和11月(秋季)对大亚湾大鹏澳海区表层的现场调查结合营养盐加富实验,探讨了不同季节硝态氮(NO-3)、脲氮(urea)和无机磷(PO3-4)等营养元素对该海区浮游植物叶绿素a含量与初级生产力及它们的粒级结构的潜在影响.调查海区表层海水叶绿素a含量在近岸养殖区较高,季节变化不明显,但其粒级结构有较大的季节差异;初级生产力的平面分布与叶绿素a含量在春、秋季均较一致,其粒级结构与叶绿素a的粒级结构在春季基本一致,但在秋季有较大差异.实验结果表明, NO-3、urea和PO3-4对该海区浮游植物叶绿素a、初级生产力及它们的粒级结构有不同的潜在影响,并存在季节差异.尽管磷被认为是该海区浮游植物生长的主要限制因子,结果显示氮(NO-3或urea)对浮游植物生长仍有潜在限制作用,其中NO-3和urea作为不同氮源的潜在影响有明显区别.  相似文献   

13.
南海叶绿素a浓度垂直分布的统计估算   总被引:2,自引:0,他引:2  
高姗  王辉  刘桂梅  黄良民 《海洋学报》2010,32(4):168-176
分析整理了1993—2006年近10 a南海北部海域、南沙海域和南海其他海域的叶绿素a浓度历史航次调查资料,基于前人提出的全球叶绿素浓度垂直分布的统计分析模式,根据南海表层叶绿素a浓度大小的不同分级,对南海叶绿素a浓度进行了参数化处理,拟合估算了南海各水层剖面的叶绿素a浓度分布值,并结合不同海区的环境特征,分析了南海叶绿素a浓度垂直分布与其海水物理环境的关系。初步分析结果表明,叶绿素a浓度随深度垂直变化的拟合曲线呈一定倾斜的正态分布特征,当表层叶绿素a浓度较低时,作为南海深水海盆区的代表,拟合值更接近实测平均值的分布,叶绿素a浓度高值集中在次表层剖面上;当表层叶绿素a浓度较高时,作为近岸区和河口区的代表,高值多集中在表层海水,拟合误差偏大。该统计估算模式对于揭示南海叶绿素a浓度垂直分布结构进行了有益的尝试,为发展适合不同海区特点的模式以及校正参数奠定了基础。利用该模式与海洋水色卫星遥感数据有效结合,将对南海叶绿素a浓度时空分布格局的研究具有重要的意义。  相似文献   

14.
黄海是亚洲沙尘暴频繁侵袭的地区,沉降的沙尘可以为该海域的浮游植物提供营养盐,促进该海域浮游植物的生长,从而对该海域的初级生产力以及碳存储等产生影响。本文利用Himawari-8卫星遥感数据,结合WRF-Chem和HYSPLIT模式,研究了2018年3月20日~4月13日期间四次沙尘事件的传输过程及其对南黄海中心(SYC)海域叶绿素a浓度的影响。结果表明,研究期内沙尘气溶胶从蒙古戈壁经过不同的传输路径到达SYC海域,在沙尘沉降事件发生后的2~8 d,SYC海域的叶绿素a浓度出现了不同程度的增加,且其峰值均超过了藻华阈值(2.15 mg·m~(-3)),有些甚至高达11.6 mg·m~(-3)。相比传输路径,叶绿素a浓度的变化受沙尘沉降量的影响更大。多数情况下,在一次沙尘过程中,SYC海域的沙尘沉降量越多,叶绿素a浓度的增长幅度越大;单日沉降量越大,叶绿素a浓度变化的响应时间越短。  相似文献   

15.
中分辨率成像光谱仪(CMODIS)是我国“神舟3号”飞船上对地观测主载荷,是我国第一台上天的具有测量海面叶绿素a浓度能力的成像光谱仪.利用宽视场海洋水色扫描仪(SeaWiFS)反演叶绿素a浓度作为参考值建立CMODIS资料处理模型,得到三个基于蓝绿波段比值法的叶绿素a浓度反演算法,平均相对误差分别为26.6%,24%和33.5%,均方根误差分别为1.16,1.15和1.23 mg/m3.在叶绿素a浓度反演误差允许范围小于35%的条件下,比值算法的适用范围为悬浮泥沙浓度小于5 g/m3的海区.悬浮泥沙的强散射作用导致比值算法在高悬浮泥沙浓度条件下产生高估叶绿素a浓度反演值的现象;在中低悬浮泥沙浓度的海区,悬浮泥沙和浮游植物对离水辐亮度的综合作用使比值算法存在低估叶绿素a浓度的趋势.  相似文献   

16.
普里兹湾海冰季节性变化的高分辨率数值模拟   总被引:1,自引:1,他引:0  
李群  吴辉碇  张璐 《海洋学报》2011,33(5):32-38
普里兹湾海冰以一年冰为主,海冰覆盖存在较大的季节性变化.海冰的分布及其季节性变化主要受当地大气环流及海流的影响.基于一个海洋-海冰耦和模式,模拟研究了该海区海冰的季节性变化特征.海洋模式基于MIT环流模式(MITgcm),海冰动力学模式参考Hibler类型的VP模型,热力学过程取自Winton三层模型.模式区域覆盖整个...  相似文献   

17.
胶州湾浮游植物粒级结构及其时空变化   总被引:1,自引:0,他引:1  
孙晓霞  孙松 《海洋与湖沼》2012,43(3):411-418
基于2003—2010年间对胶州湾分粒级叶绿素a浓度的连续观测,系统研究了胶州湾浮游植物粒级结构的季节变化、年际变化及长期变化特征。结果表明,胶州湾表层浮游植物粒级组成以小型和微型浮游植物为主,其浓度由东北部和北部向湾中间及湾外逐渐递减。不同区域分粒级叶绿素a浓度的季节与年际变化规律相似。小型和微型浮游植物表现出明显的双峰型季节变化,小型浮游植物的高峰值通常出现在冬季,而微型浮游植物则出现在夏季。长期变化结果表明,冬季小型浮游植物所占比例自90年代起表现为增加的趋势,而夏季的变化规律与冬季相反,自1998年开始,小型浮游植物所占比例下降,微型浮游植物比例有所上升。春季和秋季小型和微型浮游植物的贡献率没有表现出明显的升高或降低趋势,但微微型浮游植物的贡献率在2000年之后显著低于2000年之前。统计分析结果表明,温度、营养盐浓度与结构是影响胶州湾浮游植物粒级结构变动的重要因素。  相似文献   

18.
方涛  冯志华  高磊 《海洋科学》2012,36(11):14-18
2007年11月于长江口邻近海域通过在不同光照强度下往培养水体添加不同量的磷酸盐(或硝酸盐)进行现场培养实验,对培养过程中叶绿素a质量浓度变化以及比生长速率与氮磷浓度之间的关系进行了研究.结果表明:无光照下叶绿素 a 没有增加趋势,其他光照下浮游藻类生长有着很长的平台期,且100%光照下叶绿素a终浓度可以为80%、60%、40%、20%光照下的1.5倍、2倍、4倍、15倍;相同光照下,叶绿素 a 质量浓度在不同营养盐水平之间差异不明显,浮游藻类生长主要受光照的限制,而不是营养盐;培养介质中磷酸盐和硝酸盐浓度与浮游藻类比生长速率之间有一个临界点,当氮磷浓度超过阈值时,浮游藻类比生长速率会减小,其中磷酸盐的阈值浓度约为1~2μmol/L,硝酸盐阈值约为20~25μmol/L.  相似文献   

19.
2007年8月于长江口南支4个站位进行了营养盐和叶绿素a浓度的定点连续观测,结果表明:调查站位的营养盐和叶绿素a浓度垂直变化不大,分层不明显,表中底层平均值的相对标准偏差在0~29.86%之间,且整个潮汛期的变化基本上不具规律性,少数营养盐(如亚硝酸盐和铵盐)呈现出半日周期的变化,即高潮时浓度达到谷值,低潮时浓度出现峰值;位于长江口南支水域南部S2和S4站位的硅酸盐、磷酸盐和硝酸盐在整个潮汛期的平均值都小于北部的S1和S3站位,且S1站位的硅酸盐、磷酸盐和硝酸盐在大小潮之间平均值差异不明显,而S2站位的硅酸盐和硝酸盐大潮时平均值要高于小潮,磷酸盐则相反,此外,S4站位的叶绿素a平均值都大于其他3个站位;4个连续测站的表层叶绿素a浓度与营养盐(NO2--N、PO34--P、SiO23--Si、NO3--N、NH4+-N)相关系数低(-0.6584~0.5494),叶绿素a浓度与营养盐的周日波动相关性不明显;观测区域硅酸盐、磷酸盐、硝酸盐、亚硝酸和铵盐的平均通量分别是238.62、1.36、84.10、1.031、0.55kg.s-1。  相似文献   

20.
本文结合2019年四个季节渤海叶绿素a浓度的现场观测数据和卫星遥感资料,系统分析了渤海叶绿素a的时空分布规律及其影响因素。调查结果显示,2019年渤海春、夏、秋、冬季节叶绿素a浓度范围分别为0.4~6.8、0.5~14.9、0.2~6.5和0.4~0.9μg/L,平均浓度分别为(1.6±1.2)、(3.0±4.2)、(1.0±0.8)和(0.6±0.2)μg/L,叶绿素a浓度的季节分布规律为夏季>春季>秋季>冬季。四个季节近岸叶绿素a浓度明显高于远岸;夏季层化现象明显,表层叶绿素a浓度明显高于中、底层,春、秋、冬季节垂直混合均匀。冬季温度是浮游植物生长的主要影响因素,夏、秋季节浮游植物生长受沿岸河流营养盐输入影响显著,尤其是夏季,受黄河水沙调控影响,黄河月径流量峰值由以往的秋季提前至夏季,使得夏季营养盐得以补充,进而导致叶绿素a浓度显著增加,渤海叶绿素a峰值发生的季节总体上由以往的春、秋季转变为春、夏季。研究结果揭示了渤海叶绿素a的时空变化特征,为深入认识渤海生态系统的结构和功能提供了数据基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号