首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alfven波在低纬地区电离层的传播有其特殊性,一方面,低纬地区同样存在Alfven速度梯度的巨大变化,导致电离层Alfven谐振器(Ionospheric Alfven resonator, IAR)的形成;另一方面,由于在低纬地区磁倾角很小,所以剪切Alfven波在传播的过程中纬度方向跨度很大,不同纬度电离层参数将共同对其产生影响;并且,由于电离层水平分层,故磁力线与电离层不正交.本文选取双流体力学模型,在忽略场向电场的条件下,利用非正交坐标系,结合IRI07模型与MSISE00模型模拟低纬地区Alfven波的传播,得到其反射及耦合特性.结果表明,低纬地区同样存在电离层Alfven谐振现象,由耦合产生的压缩模有向磁赤道方向传播的趋势,夜间电离层状态相对于白天更适合IAR的形成,谐振频率沿磁力线L值增大单调递增.  相似文献   

2.
Summary Wave diagnostics of several alternatives of a constructed model of the daytime and night ionosphere of the mid geomagnetic latitudes were carried out in the ULF range of electromagnetic waves. The altitude profiles of local wave parameters of the ionosphere, the wavelengths and wave attenuation, were analysed at a fixed frequency. The frequency dependence of the amplitude and polarization characteristics of the total wave at the Earth's surface were also analysed in dependence on the frequency-amplitude spectrum of geomagnetic pulsations. The effect of the low regions of the ionosphere (h<100 km) was tested on the damping of the propagating wave and on the frequency-amplitude and polarization characteristics of the wave at the Earth's surface.  相似文献   

3.
Based on long-term observations of the resonance structure in the electromagnetic background noise spectrum (resonance spectrum structure, RSS), recorded in the frequency range 0.1–10 Hz over one complete solar cycle (11 years, from 1985 to 1995), it was found that the resonance conditions for Alfven waves in the ionosphere (ionospheric Alfven resonator) are determined at midlatitudes by the level of solar activity. RSS are regularly observed in years of minimum solar activity, and are practically absent in years of maximum solar activity. It is shown that consideration of the ionospheric Alfven resonator explains the dependence of the RSS on solar activity.  相似文献   

4.
Summary Amplitude and energy correction character istics of the vertical propagation of ULF wave from the magnetosphere through the ionosphere to the Earth's surface, necessary for micropulsation wave diagnostics of the magnetosphere by means of ground-based observations, are introduced on the basis of matrices ofRT coefficients [1–3]. The coefficients of vertical reflexibility, penetrability, transmissibility (or limpidity) and the absorption of the electromagnetic energy flux are defined, as well as analogous coefficients in the dimensions of the magnetic amplitude of the ULF wave, propagating through the given layer of the ionosphere. An examplary model of the ionosphere is used to demonstrate the frequency variations of these characteristics in the ULF wave range.  相似文献   

5.
The ionospheric Alfvén resonator (IAR) control mechanism over the EMIC wave transmission to the ground is demonstrated on a selected long-term frequency-variable subauroral Pcl event. The proper ionospheric plasma data obtained from EISCAT were accessible in a wide altitude range. Applying the numerical method of simulation of a realistic inhomogeneous IAR, the problem of appearance and disappearance of the ground Pc1 signal record was clarified on the basis of coincidence between the EMIC wave frequency spectrum and the IAR fundamental frequency peak (the frequency window). A shift of the signal source field line to lower latitudes during the development of the disturbance was noticed, and the signal frequency variation on the ground was modelled in the nonstationary IAR. Variation of the IAR altitude structure in the fundamental frequency was illustrated on altitude profiles of the normalized wave magnetic field amplitude in the horizontal and vertical components. Particular conditions of L - and R -wave mode incidence were assumed. The electron density vertical profile of IAR determines the effective resonator dimensions. In this way the IAR fundamental frequency window controls the signal within the ionosphere and on the ground.  相似文献   

6.
Summary Using methods of numerical modelling of the propagation of ULF waves through the ionosphere, the characteristics of the vertical flux of electromagnetic energy are analysed in the ULF range — at the outer boundary of the modelled ionosphere (altitude 1000 km) the reflexibility and penetrability of the energy, at the Earth's surface the transmissivity of the energy. The existence of two frequency bands is proved within the ULF range with different forms of ionospheric wave filtration: a) The band of extremely low frequencies, f<0.1–0.2 Hz (pc3–5 and Pc2 pulsation ranges) with a mirroring effect of the ionosphere-Earth system, but with small absorption; b) the band f>0.2 Hz (the Pc1 range) with increased absorption, but with resonance windows and wave emissions with a very well defined frequency structure.  相似文献   

7.
甚低纬哨声低电离层透射过程的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
利用全波解算法模拟哨声波束在甚低纬地区黎明前低电离层透射的三维能量分布,依据波场能量和偏振分布及其对波参量和电子浓度剖面的依赖特征,分析了哨声透射、反射及与大地-电离层波导耦合过程.结果表明,哨声模波存在于90km以上高度,吸收、反射、波束扩展及波模转换主要发生于电离层底部80-90km区间;到达地面的透射能量密度衰减20dB以上,透射衰减随频率变化不大,但随波入射角呈不对称变化;距透射区150km以外区域的测向方位角有很大偏差;入射波能量的很少一部分(对5kHz约为-25dB)被反射并激发起哨声模波,反射波束能量集中于入射波束附近,并随频率下降而迅速增强.计算也表明,地面接收到的甚低纬哨声回波可能与使回波向极侧偏移的电离纬向梯度有关.  相似文献   

8.
The results of observations of the solar eclipse ionospheric effects on March 29, 2006, are presented. The observations were conducted using the partial reflection method near Nizhni Novgorod and the vertical sounding method at the automatic ionospheric station near Murmansk. It has been obtained that the electron density at altitudes of 77 and 91 km decreases by a factor of more than 4; in this case the response of the ionosphere at an altitude of 91 km lags behind the eclipse maximum phase on the Earth by approximately 20 min. It has been established that the eclipse in the E and F1 regions of the polar ionosphere causes a change in the electron density by 15–20%. The delay time of this effect varies from 12 to 24 min depending on the altitude. It has been registered that the reflection virtual altitude at altitudes of the ionospheric F region increases in Murmansk and Nizhni Novgorod.  相似文献   

9.
The case study of four Pc1 subauroral pulsation events from Finland has been carried out on the basis of the full-wave numerical method. This method has been applied to simultaneous Scandinavian EISCAT radar measurements of the ionospheric plasma parameters, and their vertical (altitude) profiles have been utilized. Two alternative plasma profiles with different ion composition displays have been put to the test. A comparison between both types of the modeled ionospheric Alfvén resonator (IAR) ground signal frequency response and the frequency range of the Pc1 signal records has been studied. The results of the applied method can illustrate possible quiescent or disturbance changes in the upper ionosphere above the dense F2 layer. The ionospheric region up to ∼ 2000 km has been taken into account for this comparative analysis.  相似文献   

10.
Summary Drawing on [6], the height profiles of local complex polarization and local polarization characteristics of electromagnetic waves in several models of the Earth's ionosphere are analysed. The profiles were obtained with the aid of a computer program for modelling propagating [5]. The analysis was carried out a) for a flxed given configuration of the external magnetic field of the EarthB 0 at a number of discrete frequencies f<5 Hz, b) for chosen model of the ionosphere at a fixed given frequency f=1 Hz and in connection with a change of the dip of the lines of force and of the magnitude of the external (homogeneous) magnetic field|B 0|, c) for various models at f=1 Hz and a varying configuration of the external magnetic field, reflecting the change in geomagnetic latitude. The results of the analysis will serve as an aid to the interpretation of the results of solving the problem of wave propagation through the ionosphere.  相似文献   

11.
During the multiband wave Pc1 event on March 7, 2001 the EISCAT UHF and VHF incoherent scatter radars operated simultaneously covering an exceptionally wide altitude range of the ionosphere ~90—2000 km. This made possible to test the ionospheric Alfvén resonator (IAR) model over a large altitude range. The three lowest IAR eigenfrequencies, where the most of the Pc1 pulsation signal bands occur, were selected for the spatial analysis of the standing wave electromagnetic fields, applying the full-wave numerical simulation method. The altitude spread of amplitude maxima and nodes together with polarization characteristics of oscillation maxima in the horizontal plane are presented. The comparison of the standing wave oscillations on the altitude profile with the signal amplitude observed on the ground is also presented.  相似文献   

12.
The influence of the finite ionospheric conductivity on the structure of dispersive, nonradiative field line resonances (FLRs) is investigated for the first four odd harmonics. The results are based on a linear, magnetically incompressible, reduced, two-fluid MHD model. The model includes effects of finite electron inertia (at low altitude) and finite electron pressure (at high altitude). The ionosphere is treated as a high-integrated conducting substrate. The results show that even very low ionospheric conductivity (P = 2 mho) is not sufficient to prevent the formation of a large-amplitude, small-scale, nonradiative FLR for the third and higher harmonics when the background transverse plasma inhomogeneity is strong enough. At the same time, the fundamental FLR is strongly affected by a state of low conductivity, and when P = 2 mho, this resonance forms only small-amplitude, relatively broad electromagnetic disturbance. The difference in conductivities of northern and southern ionospheres does not produce significant asymmetry in the distribution of electric and magnetic fields along the resonant field line. The transverse gradient of the background Alfven speed plays an important role in structure of the FLR when the ionospheric conductivity is finite. In cases where the transverse inhomogeneity of the plasma is not strong enough, the low ionospheric conductivity can prevent even higher-harmonic FLRs from contracting to small scales where dispersive effects are important. The application of these results to the formation and temporal evolution of small-scale, active auroral arc forms is discussed.  相似文献   

13.
This work is devoted to a numerical simulation of the equatorial ionosphere, performed using the GSM TIP model completed with a new block for calculating the electric field. It has been indicated that the usage of the wind system calculated according to the MSIS-90 model makes it possible to reproduce the electromagnetic drift velocities at the equator, the effect of the F2-layer stratification, and the appearance of the F3 layer in the equatorial ionosphere. The calculations performed using the modified GSM TIP model made it possible to detect a maximum in the electron density vertical profile at an altitude of ∼1000 km, formed by H+ ions, which we called the G layer. If this layer actually exists, it can be observed during sounding the low-latitude ionosphere from satellites during dark time of day.  相似文献   

14.
The sea surface cannot be used as reference for Major Vertical Datum definition because its deviations from the ideal equipotential surface are very large compared to rms in the observed quantities. The quasigeoid is not quite suitable as the surface representing the most accurate Earth's model without some additional conditions, because it depends on the reference field. The normal Earth's model represented by the rotational level ellipsoid can be defined by the geocentric gravitational constant, the difference in the principal Earth's inertia moments, by the angular velocity of the Earth's rotation and by the semimajor axis or by the potential (U 0 ) on the surface of the level ellipsoid. After determining the geopotential at the gauge stations defining Vertical Datums, gravity anomalies and heights should be transformed into the unique vertical system (Major Vertical Datum). This makes it possible to apply Brovar's (1995) idea of determining the reference ellipsoid by minimizing the integral, introduced by Riemann as the Dirichlet principle, to reach a minimum rms anomalous gravity field. Since the semimajor axis depends on tidal effects, potential U 0 should be adopted as the fourth primary fundamental geodetic constant. The equipotential surface, the actual geopotential of which is equal to U 0 , can be adopted as reference for realizing the Major Vertical Datum.  相似文献   

15.
Three models for the magnetosphere-ionosphere coupling feedback instability are considered. The first model is based on demagnetization of hot ions in the plasma sheet. The instability takes place in the global magnetosphere-ionosphere system when magnetospheric electrons drift through a spatial gradient of hot magnetospheric ion population. Such a situation exists on the inner and outer edges of the plasma sheet where relatively cold magnetospheric electrons move earthward through a radial gradient of hot ions. This leads to the formation of field-aligned currents. The effect of upward field-aligned current on particle precipitation and the magnitude of ionospheric conductivity leads to the instability of this earthward convection and to its division into convection streams oriented at some angle with respect to the initial convection direction. The growth rate of the instability is maximum for structures with sizes less than the ion Larmor radius in the equatorial plane. This may lead to formation of auroral arcs with widths about 10 km. This instability explains many features of such arcs, including their conjugacy in opposite hemispheres. However, it cannot explain the very high growth rates of some auroral arcs and very narrow arcs. For such arcs another type of instability must be considered. In the other two models the instability arises because of the generation of Alfven waves from growing arc-like structures in the ionospheric conductivity. One model is based on the modulation of precipitating electrons by field-aligned currents of the upward moving Alfven wave. The other model takes into consideration the reflection of Alfven waves from a maximum in the Alfven velocity at an altitude of about 3000 km. The growth of structures in both models takes place when the ionization function associated with upward field-aligned current is shifted from the edges of enhanced conductivity structures toward their centers. Such a shift arises because the structures move at a velocity different from the E × B drift. Although both models may work, the growth rate for the model, based on the modulation of the precipitating accelerated electrons, is significantly larger than that of the model based on the Alfven wave reflection. This mechanism is suitable for generation of auroral arcs with widths of about 1 km and less. The growth rate of the instability can be as large as 1 s-1, and this mechanism enables us to justify the development of auroral arcs only in one ionosphere. It is hardly suitable for excitation of wide and conjugate auroral arcs, but it may be responsible for the formation of small-scale structures inside a wide arc.Polar Geophysical Institute, Apatity, Russia  相似文献   

16.
Pulsating of the generalized ion and neutral polar winds   总被引:1,自引:1,他引:0  
A three-dimensional, time-dependent model of the ion and neutral polar winds was used to study their dynamic evolution during the May 4, 1998 magnetic storm. The simulation tracked the dynamics of five species (O+, H+, Hs, Os, and electrons) and covered a 9-h period. During the storm, Dst decreased to −210 nT, Ap reached 300, and Kp was elevated. The IMF Bz component was southward at the start of the storm and for several hours thereafter and then turned northward. However, the magnetospheric energy input to the ionosphere exhibited a 50-min oscillation, with the plasma convection and particle precipitation patterns expanding and contracting in a periodic manner. As a consequence, the ion and neutral polar winds pulsated with an approximate 50-min period. The H+ and O+ ions displayed cyclic upflows and downflows in the topside ionosphere as well as a highly structured spatial distribution that varied with time. The vertical flux of the neutral Hs atoms was upward at the top of the ionosphere, but the magnitude varied in a cyclic manner in response to the oscillating stormtime energy input. The vertical flux of neutral Os atoms was downward at the top of the ionosphere and varied significantly with the stormtime energy input. For H+, O+, and Hs, the maximum total (integrated) vertical flux during the storm was upward at the top of the ionosphere, with values of 8–9×1025 particles/s for H+, 2–4×1026 particles/s for O+, and 2–3×1027 particles/s for Hs. The corresponding total vertical Os flux was predominately downward, with only localized areas with positive fluxes.  相似文献   

17.
用三维可压缩MHD数值模拟研究了在磁场重联过程中电子压力梯度项的效应研究结果发现在较高等离子体β,较小离子惯性尺度条件下,广义欧姆定理中压力梯度项在重联过程的作用不可忽略.在磁重联过程中,压力梯度项虽然没有明显改变磁场拓扑结构和重联速度,但它使电子和离子速度明显增大.由于在离子惯性尺度下,离子和电子运动解耦,电子是电流的主要载流子,所以场向电流也增大,并导致核心磁场明显增大.考虑到场向电流是磁层电离层耦合的一个重要因素,所以电子压力梯度项的引入加强了行星际磁场南向期间磁层电离层的耦合.电子压力梯度项还在重联区激发了波动,该波动可向重联区外传播.  相似文献   

18.
提出一个剪切Alfven波加速极光粒子的新模式。频率远小于离子回旋频率的Alfven波由磁层向电离层传播会演化成孤波,当场向电流超过离子声不稳定性的临界电流时,激发离子声不稳定性,波与粒子的相互作用产生反常阻尼使Alfven波演化成行波涌浪。它携带一个方向向上的平行电场,加速极光电子形成分立极光。对等离子体密度、电场及其对应的电势进行了数值计算,结果发现满足磁层加速区条件形成Alfvn行波涌浪,提供足够强的加速粒子的电场。  相似文献   

19.
We used bottomside ground observations and topside sounding data from the Intercosmos-19 satellite to study a Travelling Ionospheric Disturbance (TID) that occurred in response to Large-Scale Internal Gravity Wave (LSIGW) propagation during a substorm on November 30, 1979. We built a global scheme for the wavelike ionospheric variations during this medium substorm (AEmax ~800 nT). The area where the TID was observed looks like a wedge since it covers the nighttime hours at subauroral latitudes but contracts to a ~02 h local sector at low latitudes. The ionospheric response is strongly asymmetric because the wedge area and the TID amplitude are larger in the winter hemisphere than in the summer hemisphere. Clear evidence was obtained indicating that the more powerful TID from the Northern (winter) hemisphere propagated across the equator into the low latitude Southern (summer) hemisphere. Intercosmos-19 observations show that the disturbance covers the entire thickness of the topside ionosphere, from hmF2 up to at least the 1000 km satellite altitude at post-midnight local times. F-layer lifting reached ~200 km, Ne increases in the topside ionosphere by up to a factor of ~1.9 and variations in NmF2 of both signs were observed. Assumptions are made concerning the reason for the IGW effect at high altitudes in the topside ionosphere. The relationship between TID parameters and source characteristics determined from a global network of magnetometers are studied. The role of the dayside cusp in the generation of the TID in the daytime ionosphere is discussed. The magnetospheric electric field effects are distinguished from IGW effects.  相似文献   

20.
The possible causes of the strong ionospheric day-to-day variability under the influence of processes in the geospace, troposphere, and lithosphere are considered based on the data of the critical frequency of the F2 layer of the ionosphere at two observation stations. It is shown that even in the absence of powerful events, the ionosphere is influenced both “from above” and “from below”; in this case, the ionosphere can respond to an external action as an open nonlinear dissipative system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号