首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金沙江上游巴塘—德格河段地处青藏高原东部,该区地质、地形、地貌极其复杂,滑坡灾害最为发育,开展区域滑坡易发性评价对防灾减灾工作有着重要的意义。本文以金沙江上游巴塘—德格河段为研究区,在滑坡编录与野外实际调查的基础上,通过对滑坡分布规律和影响因素分析,选取高程、坡度、坡向、曲率、地形起伏度、地表切割度、地表粗糙度、地层岩性、断层、水系和道路等11个影响因子,构建了滑坡易发性评价指标体系。利用皮尔森系数去除高相关性影响因子,运用频率比方法定量分析各个因子与滑坡发育的关系。通过频率比模型选取非滑坡样本,采用集成学习算法模型进行滑坡易发性评价,根据易发性指数将研究区划分为极高易发区、高易发区、中易发区、低易发区及极低易发区5个等级。由滑坡易发性分区图和ROC曲线表明,高和极高易发区主要沿金沙江沿岸和沟谷分布,随机森林模型的成功率曲线下面积AUC=0.84,历史滑坡灾害位于高-极高易发区的灾害数占总滑坡数的84.8%,梯度提升树模型的成功率曲线下面积AUC=0.79,历史滑坡灾害位于高-极高易发区灾害数占总滑坡数的79.3%。由AUC值和历史灾害的分布可知,随机森林模型比梯度提升树模型在本研究区滑坡易发性评价中有着更好的评价精度和更高的预测能力。  相似文献   

2.
三峡库区是地质灾害管理的重点地区,鉴于长江对其沿岸边坡的水力作用不容忽视,因此需进一步研究水系因素对滑坡易发性的影响.以重庆市奉节县为例,考虑区域内水系影响显著,沿水域两岸300 m区域内划分为分区Ⅰ,其余区域为分区Ⅱ.其次,全域、分区Ⅰ、分区Ⅱ以提取的16个影响因子建立易发性评价指标分析模型,基于随机森林模型计算区域滑坡发生概率,并将全域和分区的滑坡易发性评价结果对比分析.结果表明:奉节县高和极高易发区主要分布在水域两岸及耕地范围内,这是由于库水位升降减少了防滑截面的有效应力,由于原有山体平衡在垦荒过程中被破坏,耕地对斜坡的防护作用微弱;基于水系分区后模型的训练精度优于全域模型的训练精度,准确率和F1分数的最大提升幅度分别可达5.1%、5.2%.基于水系分区的方法有利于提高滑坡易发性评价精度,该方法实用性强,可靠性高.  相似文献   

3.
以湖南省澧源镇为例,利用证据权模型和灰色关联度模型分别计算了坡度、地层岩性、斜坡形态、土地利用类型、人类工程活动5个因子二级状态证据权值和一级因子权重;综合2种模型确定全区滑坡易发性指数后,完成基于斜坡单元的全区滑坡易发性区划;根据研究区岩土体类型(碎屑岩类、碳酸盐岩夹碎屑岩类、碳酸盐岩类和松散岩土体类)分组研究不同滑坡发生概率下的有效降雨阈值曲线(I-D曲线)。研究降雨时间为3日、有效强度为22.4 mm/d的降雨工况下各岩土体类型滑坡发生的时间概率。综合时间概率和易发性结果得到澧源镇基于有效降雨阈值的滑坡灾害危险性区划图。研究结果表明:澧源镇滑坡灾害高和极高易发区占研究区总面积的25%,主要沿澧河分布;极高危险区和高危险区占研究区总面积的14%,主要分布在澧河北侧。  相似文献   

4.
根据研究区的基本情况,选择坡度、坡向、地层岩性、距断层距离、降雨、土地利用等6个评价因子,采用滑坡灾害易发性评价的GIS与AHP耦合模型进行戛洒镇滑坡灾害易发性评价,并将滑坡灾害分为极高、高、中、低和极低易发区5个区域进行了滑坡灾害易发性评价结果分析,以期为后期的小流域滑坡风险评估研究服务。  相似文献   

5.
研究旨在基于随机森林-特征递归消除模型,通过SHAP算法(SHapley Additive exPlanation, SHAP)与部分依赖图(Partial Dependence Plot, PDP)对缓丘岭谷地貌区域进行滑坡易发性评价与内部机制解释,以期为地质灾害防治研究提供参考。利用优化随机森林算法对典型缓丘岭谷地区滑坡易发性进行研究,建立缓丘岭谷滑坡易发性评价模型;利用特征递归消除算法剔除噪声因子,选取地形地貌、地质构造、环境条件、人类活动5个类型16个因子构建重庆合川区滑坡致灾因子数据库;结合合川区754个历史滑坡点,利用随机森林算法对因子重要性进行排序,并根据专家经验法对研究区的滑坡易发性进行划分,将研究区的滑坡易发性分为极低、低、中、高、极高5个等级;应用部分依赖图对合川区滑坡发生影响大的因子进行解释和SHAP算法对个体滑坡进行局部解释。结果表明:与原模型相比,随机森林-特征递归消除模型测试集AUC值提高了0.019,证明了特征递归消除算法的有效性;训练集以及测试集的AUC值分别为0.769、0.755,具有较高的预测精度;缓丘缓坡地区在起伏较大地区滑坡密度较大,历史滑坡多...  相似文献   

6.
为了提升机器学习模型在滑坡易发性评价任务中的泛化能力,以甘肃天水市为例,采用基于LightGBM的增量学习模型,并利用Autogluon自动机器学习框架实现模型的超参数优化和堆叠,以及使用SHAP可解释框架进行特征选择和数据异常分析,构建了适用于滑坡易发性评价的增量学习模型。通过在天水市不同区域采集的滑坡灾害数据进行模型验证,结果表明,基于增量学习的滑坡易发性评价模型能够有效地识别和预测滑坡易发区域,根据新数据集自适应调整模型,并且提高模型的性能。  相似文献   

7.
滑坡易发性评价是滑坡灾害管理的基础工作,也是制定各项防灾减灾措施的重要依据。针对传统的信息量模型在评价过程中确定权重值存在准确性不高的缺点,文章提出RBF神经网络和信息量耦合模型。以甘肃省岷县为研究区,筛选坡度等9个指标因子构建了滑坡灾害易发性评价指标体系,应用RBF神经网络-信息量耦合模型(RBFNN-I)进行滑坡灾害易发性评价,利用合理性检验和ROC曲线对模型的评价结果进行精度检验。结果表明:(1)RBFNN-I模型的AUC值为0.853,相比单一的RBFNN和I模型分别提高了6.3%和9.7%,说明RBFNN-I模型具有更好的评价精度;(2)岷县滑坡灾害的极高易发区和高易发区主要分布在临潭—宕昌断裂带、洮河及其支流、闾井河和蒲麻河两侧河谷地带,距断层距离、降雨量、距道路距离和NDVI是影响岷县滑坡灾害分布的主控因子。  相似文献   

8.
针对矿区长期煤矿开采引起的滑坡灾害频发问题,快速高效地模拟和评价矿致滑坡灾害易发性是实现采矿地区科学防灾减灾的关键。基于此,本文应用信息量与Logistic回归模型结合多源高分辨率光学遥感数据等,选取相对高差、坡度、坡向、距断层距离、NDVI、距采空区距离6个滑坡影响因子来评价采煤矿区滑坡灾害易发性。结果表明:(1)信息量与Logistic回归模型耦合的综合预测准确率为96%,信息量模型滑坡预测准确率为95%,实验结果表明耦合模型的预测精度优于单一信息量评价模型,评价模型的合理性和预测精度皆符合检验要求;(2)研究结果也表明了采用信息量+Logistic回归模型耦合能较为客观准确、快速高效地评价地下采矿引起的滑坡灾害易发范围,评价结果可为类似地区高效快速划定滑坡灾害易发区间提供技术支撑。  相似文献   

9.
开展铁路沿线滑坡易发性评价对川藏交通廊道工程建设及运维过程中的风险管理具有重要意义.提出一种层数自适应、通道加权的卷积神经网络(layer adaptive weighted convolutional neural network,LAW-CNN),对川藏交通廊道沿线滑坡易发性进行评价.依据野外调查和影响因素分析筛选出影响滑坡发生的影响因子,绘制滑坡编目,构造用于易发性评价的实验数据集;针对卷积神经网络的权重初值、网络层数等超参数难以优化设置的问题,提出基于影响因子信息熵的通道加权方法和网络层数优选策略,通过多通道加权和层数自适应分类卷积的方式提出滑坡易发性制图的LAW-CNN架构;搜索最优LAW-CNN网络结构并训练网络参数,获取研究区滑坡发生概率并进行易发性分级评价.所提的LAW-CNN模型可以不同权重和不同深度挖掘影响因子的深层特征,实验结果表明,模型曲线下面积(area under curve,AUC)值为0.852 8,极高易发区滑坡点密度为1.251 9,均优于SVM(support vector machine)和CNN模型;川藏交通廊道沿线滑坡极高和高易发区主要集中在大江大河两侧以及横断山区.LAW-CNN模型可较好评价川藏交通廊道滑坡易发性,能够为川藏交通廊道的建设和灾害防治提供科学的依据.   相似文献   

10.
基于多模型的滑坡易发性评价以甘肃岷县地震滑坡为例   总被引:1,自引:0,他引:1  
2013年7月22日,甘肃省岷县漳县交界处发生了MS6.6级地震(岷县地震),本文以这次地震烈度Ⅷ度区为研究区,根据地震前后遥感影像解译出来的2330个地震滑坡数据,以坡度、坡向、水系、岩性和断层为因子图层,分别应用模糊逻辑法,信息量模型及Shannon熵改进的信息量模型,对研究区的地震滑坡易发性进行评价。结果表明: 1滑坡的高易发性地区位于研究区的中间部分,以及水系0~50m这一缓冲区范围内,离水系越近滑坡易发性等级越高; 2应用ROC曲线对3个模型的易发性评价结果进行比较,信息量模型和Shannon熵改进的信息量模型的AUC值分别为0.8488, 0.8502; 模糊逻辑模型的AUC值为0.7640,表明前两个模型的表现较好,而模糊逻辑模型相对来说表现一般; 3通过对比3个模型中各等级易发性所占的面积比例和各等级易发性中滑坡数目占总数比例,表明Shannon熵改进后的模型更适用于灾害风险评价以及应急风险管理等实际应用。  相似文献   

11.
云南省陇川县地质环境脆弱,易发生滑坡灾害,对其开展滑坡易发性评价对指导陇川县的滑坡地质灾害防治具有重大意义。根据陇川县地理环境、地质环境、人类活动等条件,选取高程、坡度、坡向、剖面曲率、平面曲率、归一化植被指数、水系距离、断层距离、地层岩性和道路距离等10个评价因子,利用信息量模型和ArcGIS软件进行滑坡易发性评价。结果表明,滑坡高易发区主要位于研究区北部、东南部和西南部;中易发区主要位于中部、东部和西部部分地区;低易发区主要位于陇把镇、城子镇大部分地区和户撒阿昌族乡的西北部;不易发区主要位于清平乡中部、城子镇中部部分地区、以及章凤镇大部分地区。在中易发区和高易发区包含83.56%的滑坡灾害点,且滑坡面积随着易发性等级的增加也随之增大。滑坡中、高易发区内发生的滑坡面积分别占研究区滑坡面积的22.79%和58.13%,分析结果与实际灾害分布特征相吻合,可为研究区及类似区域的滑坡地质灾害防灾减灾工作提供参考意见。  相似文献   

12.
基于有效降雨强度的滑坡灾害危险性预警   总被引:1,自引:0,他引:1       下载免费PDF全文
选取湖北省恩施地区1 000 km2区域作为典型研究区, 在全面分析该区域历史滑坡资料的基础上, 根据该区滑坡生成与地层岩性之间的关系, 将研究区地层划分为高、中、低3类易发性岩组.分岩组统计降雨监测数据与历史滑坡信息, 得出有效降雨强度与关键降雨持续时间的散点图, 由此确定不同滑坡发生概率的有效降雨强度阈值, 提出该区的滑坡灾害危险性预警判别模型.基于样本区统计数据建立滑坡预测指标体系, 运用GIS得出研究区域的滑坡空间易发性区划结果, 并根据不同易发岩组-有效降雨强度模型, 叠加滑坡灾害易发性分区结果与降雨危险性预警等级分级结果, 对研究区的滑坡灾害危险性进行了预测预警.结果表明: 不同易发岩组-有效降雨强度模型所得预警结果与实际情况吻合, 预警模型具有考虑全面和预警精度高的特点, 在实际预警中切实可用.   相似文献   

13.
黄土高原在地质环境与人类活动的复杂互馈作用下易导致黄土崩滑灾害频发,亟需选择适用性的影响因子和训练模型开展滑坡易发性评价研究.本研究以黄土高原为研究区,基于野外滑坡调查和资料收集,构建涵盖地形地貌、基础地质环境、气象水文、人类活动、土壤物理化学性质以及植被覆盖的评价体系,采用信息量模型( Ⅳ)分别联接到随机森林模型(RF)和卷积神经网络模型(CNN)构建耦合模型 Ⅳ-RF和 Ⅳ-CNN,开展滑坡易发性评价研究.结果表明,耦合模型( Ⅳ-RF、 Ⅳ-CNN)的精度均高于独立模型(RF、CNN),4种模型的AUC值分别为0.916、0.938、0.878、0.853, Ⅳ-CNN具有更强的预测能力和精度. Ⅳ-CNN模型的极高、高、中、低、极低易发性区域面积占比分别为8.78%、7.47%、15.34%、19.82%、47.87%,主要分布在黄土高原南部和东部地质环境复杂和人类活动强烈的山地、黄土梁峁地区.坡度、侵蚀类型、地貌类型、粘粒含量、距道路距离在贡献率分析中排在前5位,是影响滑坡发育的主控因子.本研究旨在为黄土高原滑坡灾害的预测和防治工作提供可靠的科学依据,为滑坡易发性评价研究深化...  相似文献   

14.
滑坡灾害易发性研究对地质灾害风险管理及减灾防灾有着重要的现实意义。目前,多模型耦合的评价方法在国内外应用较为广泛,但将证据权与其他方法相结合用于滑坡易发性评价的研究却较少。鉴于此,本文以浙江省永嘉县为例进行滑坡易发性评价,选取高程等9个因素作为滑坡易发性的评价因子。利用证据权模型计算得到的证据权对比度与分级栅格比、滑坡栅格比进行比较,实现各评价因子状态分级处理;再运用Logistic回归模型算得各评价因子的权重。综合两种模型确定的状态分级权重和评价因子权重,基于GIS的栅格运算功能得到各评价单元的滑坡发生概率,实现研究区滑坡易发性分级区划。研究结果表明,证据权与Logistic回归耦合模型的评价结果的合理性与精确度均优于两种单一模型;且极高易发区和高易发区主要分布在水系延展区、断层密集区、岩组软弱区。研究结果对滑坡灾害风险管理及城市防灾规划具有一定的参考价值。  相似文献   

15.
以万山区为例,在区域滑坡孕灾条件的基础上,筛选工程地质岩组、斜坡结构、平均坡度、地貌、距构造距离及距河流距离共6个易发条件因子,选取逻辑回归模型和信息量模型对山区滑坡进行易发性评价。结果显示逻辑回归模型中中高易发区面积占比分别为1578%和1970%,82%的地质灾害点落在该区域内;信息量模型中中高易发区面积占比为1241%、2519%,包含了区域88%的滑坡灾害点。最后通过实际发生的灾害点在各易发区的分布情况进行检验,逻辑回归模型中灾害点落在高易发区的比例远小于信息量模型,且高易发等级中灾害点实际发生的比值较小,说明针对山区区域滑坡地质灾害易发性评价结果预测上,信息量模型的评价结果更为客观准确。  相似文献   

16.
滑坡易发性评价是精细化滑坡灾害风险评价的基础。为了提升滑坡易发性评价模型的精度和稳健性,以三峡库区万州区燕山乡为例,选取工程地质岩组、堆积层厚度等九个影响因子构建滑坡易发性评价指标体系,应用信息量模型定量分析滑坡发育与指标之间的关系。在此基础上,随机选取70%/30%的滑坡样本作为训练/验证数据集,应用极致梯度提升模型(extreme gradient boosting, XGBoost)开展易发性评价。随后从模型预测精度和模型稳定性两方面将其与决策树模型(decision tree, DT)和梯度提升树模型(gradient boosting decision tree, GBDT)进行对比。结果表明:研究区堆积层滑坡主要受长江水系、堆积层厚度和工程地质岩组影响。XGBoost模型具有最高的准确率(94.3%)和预测精度(97.3%)。在模型稳定性验证中,平均预测精度最高(97.3%),优于DT(91.3%)和GBDT(95.7%),模型标准差和变异系数均为0.01,低于其余两种模型。XGBoost在区域滑坡易发性评价与制图中得到了可靠的结果,为滑坡灾害空间预测提供了新的技术支撑。  相似文献   

17.
滑坡是沙溪流域主要地质灾害类型之一,开展滑坡灾害易发性评价可为区域地质灾害防治提供数据基础和决策依据。通过沙溪流域生态地质调查,分析了滑坡灾害分布规律和影响因素之间的关系,选取岩性建造、地貌、坡度、坡向、降雨量、距河流距离和距断层距离7项指标,利用层次分析法及地理信息系统空间分析技术,开展沙溪流域滑坡地质灾害易发性评价。结果显示: 沙溪流域滑坡易发性影响因子依次为岩性建造、多年年均降水量、地形地貌、坡度、距河流距离、距断层距离和坡向; 沙溪流域滑坡灾害易发性与坡度、岩性建造、年均降水量表现出明显正相关,即坡度越大、岩性建造性质越软弱、越易风化,年均降水量越多,越易引发滑坡灾害; 滑坡灾害易发性与断裂构造、河流距离与滑坡灾害易发性呈负相关,即距离越近越容易诱发地质灾害; 流域整体以低易发区和极低易发区为主,高易发区主要分布在沙溪流域中南部、东部及东北部地区。这为沙溪流域地质灾害防治提供了基础数据和决策依据。  相似文献   

18.
周超  殷坤龙  曹颖  李远耀 《地球科学》2020,45(6):1865-1876
准确的滑坡易发性评价结果是滑坡风险评价的重要基础.为提升滑坡易发性评价精度,以三峡库区龙驹坝为例,选取坡度等10个因子构建滑坡易发性评价指标体系,应用频率比方法定量分析各指标与滑坡发育的关系.在此基础上,随机选取70%/30%的滑坡数据作为训练/测试样本,应用径向基神经网络和Adaboost集成学习耦合模型(RBNN-Adaboost),径向基神经网络和逻辑回归模型分别开展易发性评价.结果显示:水系距离、坡度等是滑坡发育的主控因素;RBNN-Adaboost耦合模型的预测精度最高(0.820),优于RBNN模型和LR模型的0.781和0.748.Adaboost集成算法能进一步提升模型的预测性能,所提出的耦合模型结合了两者的优点,具有更强的预测能力,是一种可靠的滑坡易发性评价模型.   相似文献   

19.
滑坡空间易发性分析有助于开展滑坡防灾减灾工作,训练有效的滑坡预测模型在其中扮演重要角色.以三峡库区湖北段为研究区,选取高程、坡度、斜坡结构、土地利用类型、岩土体类型、断裂距离、路网距离、河网距离、以及归一化植被指数这9个影响因子建立滑坡空间数据库,采用集成学习中的随机森林算法进行滑坡易发性评价.结果显示,随机森林抽样训练的方式有利于确定较优的训练参数,保证随机森林在不过拟合的情况下取得满意的拟合能力和泛化能力.随机森林绘制的滑坡易发性分级图显示出合理的空间分布,其中73.35%的滑坡分布在较高和极高级别区域.而巴东县北部、秭归县中部以及夷陵区南部等区域显示出较高的易发性级别.性能评估及易发性统计结果均表明随机森林是一种出色的算法,在滑坡空间预测领域具有较好的适用性.   相似文献   

20.
巴东县城由于其特殊的地理位置和特有的地质条件,使之成为滑坡灾害多发地带,严重威胁着巴东县城的发展,因此,有必要对巴东县城进行滑坡易发性评价研究。首先,基于GIS平台分别提取影响滑坡发生发育的各指标因子(地层岩性、地形地貌、地质构造、水文地质条件等),并划分证据层;其次,采用证据权法分别计算各证据层的权重及后验概率;然后将单元各证据层后验概率进行叠加,生成滑坡易发性分区图;最后,使用自然断点法将研究区按滑坡易发程度分为极高易发区、高易发区、中易发区、低易发区与极低易发区5类,极高易发区与高易发区面积之和约占研究区总面积的33%,其中86%的已有滑坡发生在极高易发区和高易发区,利用成功率曲线检验表明区划效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号