首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
断层陡坎的形态可以保存有关断层带上地震活动等重要信息,陡坎上的坡折就是多次地震发生后陡坎演化留下的微地貌信息。以往研究选取的断层陡坎多为位于标准阶地面上的断层陡坎,而断层沿线地貌现象复杂,因此需要探索一种具有普适性的断层陡坎形态研究方法。本研究将常见的断层陡坎剖面按照形态划分为三种类型,以LiDAR技术获取的0.2m分辨率DEM数据为基础,选择了8个属于不同断层陡坎剖面类型的实验区,每个实验区采集不少于20条剖面,通过窗口检验确定研究区最佳数据获取移动窗口为7个像元并计算每条剖面的坡度值,通过坡度约束限定陡坎范围,进而识别坡折并获取坡折信息。对坡折信息进行概率密度统计,根据概率密度统计图中的峰值个数确定强震事件的次数。结果显示,陡坎形态研究结果与古地震探槽结果表现出较好的一致性,表明本文提出的陡坎形态研究方法可以适用于不同类型断层陡坎来确定强震事件次数。  相似文献   

2.
嘉峪关断层中段的新活动特征   总被引:1,自引:0,他引:1  
嘉峪关断层是河西走廊盆地内部的一条重要断层,断层走向NNW向,晚第四纪以来新活动特征以挤压逆冲为主兼具有右旋走滑特征。通过野外地质调查,在嘉峪关城楼北关园子山嘉峪关断层大陡坎西侧0.5km处的Ⅲ级阶地面上,新发现一段长约1.6km保存完好的小断层陡坎,坎高0.5~2m,且有冲沟发生右旋位错现象。经探槽开挖和热释光测年确认,嘉峪关断层全新世有古地震活动。据断错地貌的差分GPS测量和测年结果,得到断裂晚第四纪晚期以来的平均滑动速率为0.52~0.56mm/a。  相似文献   

3.
汶川8.0级地震发震断层的累积地震位错研究   总被引:1,自引:0,他引:1  
2008年5月12日,四川省汶川县内发生MS8.0地震。此次地震沿龙门山中央断裂产生1条长达200km的同震地表破裂带。文中选择位于地震地表破裂带北段的南坝镇、凤凰村以及南段的映秀镇这3个地点,以被断层错断的河流阶地为研究对象,对多级阶地面上的地震地表破裂及断层陡坎地貌进行了野外实测工作。经过测量数据的计算和分析,得到了各级阶地上断层陡坎的高度,该值即为该阶地记录的地震断层的累积垂直位错量。若以本次地震的垂直位错量作为古地震位错量的均值,则可计算得到每级阶地累积的地震次数。研究结果表明,各点T1阶地形成以来仅经历过1次事件,即本次地震事件;T2阶地形成以来约经历了5次事件;T3阶地形成以来约经历了9~11次事件;T4阶地形成以来约经历了20次事件。在本文研究的基础上,结合前人的阶地测年数据,则可获得古地震复发间隔的可靠数据  相似文献   

4.
本文通过研究沿新疆可可托海—二台断层1931年发生地震时所形成的断层陡坎和以前古地震形成的基岩断层坡角的陡坡变化,探讨了位于山坡上的地震断层陡坎与形成年代之间的关系,并进一步讨论了该断层上大震重复发生的时间间隔。 断层陡坎按其构成物质可分为松散碎屑的和基岩的两类。松散碎屑陡坎的平均剥蚀速率为0.19°/年;基岩陡坎的平均剥蚀速率为0.036°/年。对于松散碎屑陡坎来说,逆向陡坎(其倾向与山坡倾向相反)比顺向陡坎(其倾向同山坡倾向)较易保存,前者为 200多年,后者为60—70年。 根据基岩陡坎脊部受剥蚀的两种坡度,求得1931年以前两次古地震的年代分别为公元1264年和公元681年。最后求得该断层大震重复发生的平均时间间隔为625年。  相似文献   

5.
石树中  柏美祥 《内陆地震》1997,11(2):148-153
通过对地震断层陡坎演为过程的分析,应用均匀物质扩散理论建立地震断层陡坎的形态方程,推断古地震断层陡坎的年龄,从而确定古地震事件的期次及年代。用该方法对二台活断层古地震断层陡坎进行计算,所得结果与用其它方法确定的古地震事件的期次及年代对应较好。  相似文献   

6.
王家沟断层组断错了中更新世砾石台地及王家沟东岸的Ⅲ级阶地,地貌形迹非常清晰,地表变形现象主要表现为地震断层、断层陡坎和挤压鼓包等。根据不同地貌面上跨断层测量获得的一系列实测数据,得到王家沟Ⅲ级阶地上的地表陡坎高度为0.4~1.6m,最大变形带宽度为50m左右; 中更新世台地上的陡坎高度多为1.5~5.0m,最大变形带宽度为90m左右。利用探槽开挖揭露出的断层位置与地表强变形带测量剖面的叠加对比,初步确定王家沟断层组上、下盘之间变形宽度的比例为2:1左右,并由此讨论了王家沟断层组上、下盘的 "避让带"宽度问题。  相似文献   

7.
地貌陡坎的成因有许多种, 其中之一是由断层在新构造时期的活动造成。 因此, 地貌陡坎的存在可能指示了断层在新生代的活动性, 然而在运用地貌线性方法判定新生代以来断层活动的时候还需要有其他资料的相互验证, 否则可能得到相反的结论。 该文以邙山东侧陡坎与老鸦陈断层为例, 通过遥感影像解释、 中浅层地震探测、 联合钻孔对比、 地貌测量等方法, 得到了老鸦陈断层是一条倾向NE向的前第四纪正断层, 同时将陡坎分为三段, 陡坎总体走向NW—NWW向, 由北而南, 高差逐渐降低, 出郑州东南后消失。 分析两者之间的关系, 认为古黄河改道或其支流侵蚀切割形成邙山东侧陡坎, 与老鸦陈断层没有直接关系, 陡坎的形成时间不应早于晚更新世。  相似文献   

8.
本文用地貌测量统计方法对我国北京、云南大理和陕西华山等地区基本已知地质年龄的地震断层陡坎进行了研究。获得了相应地区断层陡坎的一些资料和距今2700年左右形成的断层陡坎回归方程。  相似文献   

9.
1515年云南永胜地震形变带和震级讨论   总被引:3,自引:0,他引:3  
永胜地震发生在程海断裂北端。地震形变带沿袭程海断裂分布。形变带由地裂缝、地陷、陡坎、滑坡、山崩、断崖等组成。形变带长约42公里,宽约8公里,垂直位错量1—2米。据此确定的地震震级为≥7.5级。永胜地震区存在许多古地震现象,包括断层陡坎、地裂缝、崩积楔、地陷和滑坡等。对其进行深入研究有利于地震危险性分析。  相似文献   

10.
汶川地震震中映秀地区地表破裂特征   总被引:4,自引:3,他引:1       下载免费PDF全文
汶川8级大震的震中位于映秀镇,地震在映秀地区造成了多处地表破裂,如公路拱曲、地震陡坎,坡中槽新变形等,长度达300余米.经实地全站仪和GPS测量,定量分析了地表破裂的垂直分量与水平分量以及两者之间的比值,以此揭示了映秀-北川断裂的运动性质为逆冲兼右行走滑,在映秀地区逆冲分量大于走滑分量.将本次地震造成的位错数据与震前资料对比,发现汶川地震产生的地表破裂位置与地质历史上映秀-北川断裂造成的断层位错位置是相当吻合的,说明映秀地区Ⅳ级阶地上40余米的的断层陡坎可能是地质历史时期若干次大地震的结果.  相似文献   

11.
Geomorphic study on Wjiahe segment of Serteng piedmont fault,Inner Mongolia is made.Throuth analysis of the available data in combination with the results of predecessors‘studies it can be obtained that average vertical displacement rate is 0.48-0.75mm/a along the Wujiahe segment since the late Pleistocene(14.450-22.340ka BP)and 0.56-0.88mm/s since the early-middle Holocene(5.570-8.830ka BP).Analyzing paleoseismic phenomena revealed in the excavated 5trenches in combination with the results of predecessors‘studies of paleoearthquakes on the fault,we determine five paleoseismic events on the Wujiahe segment of Serteng piedmont fault since 27.0ka BP and the recurrence interval to be about 4.300-4.400ka,A cluster of paleoearthquakes occurred probably during 8.000-9.000ka BP and two paleoeismic events in 10.000-20.000ka BP may be missed.A comparison between height of fault scarps and sum of displacement caused by paleoseismic events revealed in trenches,and recurrence interval of paleoseismic events obtained from average displacement rate along the fault and the disloca-tion by one event suggest that three paleoseismic events are absent in Alagaitu trench.Two paleoseismic events may be absent on the whole active fault segment.  相似文献   

12.
The Yumen Fault lies on the west segment of the north Qilian Fault belt and adjacent to the Altyn-Tagh Fault,in the north margin of the Tibet Plateau.The tectonic location of the Yumen fault is special,and the fault is the evidence of recent activity of the northward growth of Tibetan plateau.In recent twenty years,many researches show the activity of the Yumen Fault became stronger from the early Pleistocene to the Holocene.Because the Yumen Fault is a new active fault and fold belt in the Qilian orogenic belt in the north margin of the Tibet Plateau,it is important to ascertain its slip rate and the recurrence interval of paleoearthquakes since the Late Pleistocene.Using the satellite image interpretation of the Beida river terrace,the GPS measurement of alluvial fans in front of the Yumen Fault and the trench excavation on the fault scarps,two conclusions are obtained in this paper.(1) The vertical slip rate of the Yumen Fault is about 0.41~0.48mm/a in the Holocene and about 0.24~0.30mm/a in the last stage of the late Pleistocene.(2) Since the Holocene epoch,four paleoearthquakes,which happened respectively in 6.12~10.53ka,3.6~5.38ka,1.64~1.93ka and 0.63~1.64ka,ruptured the surface scarps of the Yumen Fault.Overall,the recurrence interval of the paleoseismic events shortens gradually and the activity of the Yumen Fault becomes stronger since the Holocene.Anther characteristic is that every paleoearthquake probably ruptured multiple fault scarps at the same time.  相似文献   

13.
The northern margin of the Qinghai-Tibet Plateau is currently the leading edge of uplift and expansion of the plateau. Over the years, a lot of research has been carried out on the deformation and evolution of the northeastern margin of the Qinghai-Tibet Plateau, and many ideas have been put forward, but there are also many disputes. The Altyn Tagh Fault constitutes the northern boundary of the Qinghai-Tibet Plateau, and there are two active faults on the north side of the Altyn Tagh Fault, named Sanweishan Fault with NEE strike and Nanjieshan Fault with EW strike. Especially, studies on the geometric and kinematic parameters of Sanweishan Fault since the Late Quaternary, which is nearly parallel with the Altyn Tagn Fault, are of great significance for understanding the deformation transfer and distribution in the northwestward extension of the Qinghai-Tibet Plateau. Therefore, interpretation of the fault landforms and statistical analysis of the horizontal displacement on the Sanweishan Fault and its newly discovered western extension are carried out in this paper. We believe that the Sanweishan Fault is an important branch of the eastern section of the Altyn Tagh fault zone. It is located at the front edge of the northwestern Qinghai-Tibet Plateau and is a left-lateral strike-slip and thrust active fault. Based on the interpretation of satellite imagery and microgeomorphology field investigation of Sanweishan main fault and its western segments, it's been found that the Sanweishan main fault constitutes the contact boundary between the Sanweishan Mountain and the alluvial fans. In the bedrock interior and on the north side of the Mogao Grottoes, there are also some branch faults distributed nearly parallel to the main fault. The main fault is about 150km long, striking 65°, mainly dipping SE with dip angles from 50° to 70°. The main fault can be divided into three segments in the spatial geometric distribution:the western segment(Xizhuigou-Dongshuigou, I), which is about 35km long, the middle segment(Dongshuigou-Shigongkouzi, Ⅱ), about 65km long, and the east segment(Shigongkouzi-Shuangta, Ⅲ), about 50km long. The above three segments are arranged in the left or right stepovers. In the west of Mingshashan, it's been found that the fault scarps are distributed near Danghe Reservoir and Yangguan Town in the west of Minshashan Mountain, and we thought those scarps are the westward extension of the main Sanweishan Fault. Along the main fault and its western extension, the different levels of water system(including gullies and rills)and ridges have been offset synchronously, forming a series of fault micro-geomorphology. The scale of the offset water system is proportional to the horizontal displacement. The frequency statistical analysis of the horizontal displacement shows that the displacement has obvious grouping characteristics, which are divided into 6 groups, and the corresponding peaks are 3.4m, 6.7m, 11.4m, 15m, 22m and 26m, respectively. Among them, 3.4m represents the coseismic displacement of the latest ancient earthquake event, and the larger displacement peak represents the accumulation of coseismic displacements of multi-paleoearthquake events. This kind of displacement characterized by approximately equal interval increase indicates that the Sanweishan Fault has experienced multiple characteristic earthquakes since the Late Quaternary and has the possibility of occurrence of earthquakes greater than magnitude 7. The distribution of displacement and structural transformation of the end of the fault indicate that Sanweishan Fault is an "Altyn Tagh Fault"in its infancy. The activities of Sanweishan Fault and its accompanying mountain uplift are the result of the transpression of the northern margin of the Qinghai-Tibet Plateau, representing one of the growth patterns of the northern margin of the plateau.  相似文献   

14.
More attention has been paid to the late Quaternary activity of the boundary fault of the Sichuan-Yunnan block in eastern Tibet. The Lijiang-Xiaojinhe Fault (LXF) locates along the boundary of the northwest Sichuan and central Yunnan sub-blocks in the Sichuan-Yunnan block. Clear displaced landforms show that the fault has undergone strong late-Quaternary activity. However there is no surface-rupturing earthquake occurring on the LXF in the historical record. The LXF crosses the city of Lijiang, one of the most important tourist cities in Southwest China. The rupture behavior on this fault remains unclear and it is hard to assess its seismic hazard in the future. In this study, on the base of the interpretation of high-resolution satellite imagery, we chose the middle segment of the LXF and dug three trenches at Muzhuda, Hongxing, and Gantangzi sites to constrain the ages of paleoearthquakes combined with radiocarbon dating and OxCal modeling. The Muzhuda trench shows that at least three events occurred on the middle segment of the LXF at 7 940~6 540a BP, 4 740~4 050a BP and 1 830~420a BP, respectively. The Hongxing trench indicates that the LXF underwent two events at 5 120~3 200a BP and 2 100~1 220a BP. The Gantangzi trench reveals at least three paleoearthquakes at 44 980~17 660a BP, 7 210~3 810a BP and 2 540~1 540a BP, respectively. The events in the Gantangzi trench might be incomplete because of stratigraphic gap. These three trenches indicate that three events occurred on the middle segment of the LXF in the Holocene at 7 940~7 210a BP, 4 740~4 050a BP and 1 830~1 540a BP, respectively. Large earthquakes on the middle segment of the LXF appear to fit the quasi-periodic model with the mean recurrence interval of~3 000a and the estimated magnitude 7.5. Given the strong late-Quaternary activity of the middle segment of the LXF and a long elapsed time, we propose that the middle segment of the LXF might have a high seismic hazard potential in the near future.  相似文献   

15.
利用14C、热释光(TL)样品年代及扩散方程计算结果,结合区域黄土剖面中古土壤年龄,对毛毛山地区晚第四纪各级地貌年龄进行了对比研究。根据毛毛山活动断裂水平位移和垂直位移分布明显的分组特征,求得毛毛山断裂带不同段落不同时段的平均滑动速率。大约自中更新世晚期以来,毛毛山断裂走滑段的平均水平滑动速率为2.3~3.9mm/a,垂直滑动速率为0.07~0.19mm/a;天祝盆地倾滑段垂直滑动速率为0.11~0.86mm/a。沿断裂带滑动速率具明显的非均匀性特点,表现为自东向西水平位移具累积滑动亏损特征,垂直位移则具补偿性  相似文献   

16.
The Ebomiao Fault is a newly discovered active fault near the block boundary between the Tibetan plateau and the Alashan Block. This fault locates in the southern margin of the Beishan Mountain, which is generally considered to be a tectonically inactive zone, and active fault and earthquake are never expected to emerge, so the discovery of this active fault challenges the traditional thoughts. As a result, studying the new activity of this fault would shed new light on the neotectonic evolution of the Beishan Mountain and tectonic interaction effects between the Tibetan plateau and the Alashan Block. Based on some mature and traditional research methods of active tectonics such as satellite image interpretation, trenches excavation, differential GPS measurement, Unmanned Aircraft Vehicle Photogrammetry(UAVP), and Optical Stimulated Luminescence(OSL)dating, we quantitatively study the new activity features of the Ebomiao Fault.
Through this study, we complete the fault geometry of the Ebomiao Fault and extend the fault eastward by 25km on the basis of the 20km-fault trace identified previously, the total length of the fault is extened to 45km, which is capable of generating magnitude 7 earthquake calculated from the empirical relationships between earthquake magnitude and fault length. The Ebomiao Fault is manifested as several segments of linear scarps on the land surface, the scarps are characterized by poor continuity because of seasonal flood erosion. Linear scarps are either north- or south-facing scarps that emerge intermittently. Fourteen differential GPS profiles show that the height of the north-facing scarps ranges from (0.22±0.02)m to (1.32±0.1)m, and seven differential GPS profiles show the height of south-facing scarps ranging from (0.33±0.1)m to (0.64±0.1)m. To clarify the causes of the linear scarps with opposite-facing directions, we dug seven trenches across these scarps, the trench profiles show that the south-dipping reverse faults dominate the north-facing scarps, the dipping angles range from 23° to 86°. However, the south-facing scarps are controlled by south-dipping normal faults with dipping angles spanning from 60° to 81°.
The Ebomiao Fault is dominated by left-lateral strike-slip activity, with a small amount of vertical-slip component. From the submeter-resolution digital elevation models(DEM)constructed by UAVP, the measured left-lateral displacement of 19 gullies in the western segment of the Ebomiao Fault are(3.8±0.5)~(105±25)m, while the height of the north-facing scarps on this segment are(0.22±0.02)~(1.32±0.10)m(L3-L7), the left-lateral displacement is much larger than the scarp height. In this segment, there are three gullies preserving typical left-lateral offsets, one gully among them preserves two levels of alluvial terraces, the terrace riser between the upper terrace and the lower terrace is clear and shows horizontal offset. Based on high-resolution DEM interpretation and displacement restoration by LaDiCaoz software, the left-lateral displacement of the terrace riser is measured to be(16.7±0.5)m. The formation time of the terrace riser is approximated by the OSL age of the upper terrace, which is (11.2±1.5)ka BP at (0.68±0.03)m beneath the surface, and(11.4±0.6)ka at (0.89±0.03)m beneath the surface, the OSL age (11.2±1.5)ka BP at (0.68±0.03)m beneath the surface is more close to the formation time of the upper terrace because of a nearer distance to sediment contact between alluvial fan and eolian sand silt. Taking the (16.7±0.5)m left-lateral displacement of the terrace riser and the upper terrace age (11.2±1.5)ka, we calculate a left-lateral strike-slip rate of(1.52±0.25)mm/a for the Ebomiao Fault. The main source for the slip rate error is that the terrace risers on both walls of the fault are not definitely corresponded. The north wall of the fault is covered by eolian sand, we can only presume the location of terrace riser by geomorphic analysis. In addition, the samples used to calculate slip rate before were collected from the aeolian sand deposits on the north side of the fault, they are not sediments of the fan terraces, so they could not accurately define the formation age of the upper terrace. This study dates the upper terrace directly on the south wall of the fault.
Since the late Cenozoic, the new activity of the Ebomiao Fault may have responded to the shear component of the relative movement between the Tibetan plateau and the Alashan Block under the macroscopic geological background of the northeastern-expanding of the Tibetan plateau. The north-facing fault scarps are dominated by south-dipping low-angle reverse faults, the emergence of this kind of faults(faults overthrusting from the Jinta Basin to the Beishan Mountain)suggests the far-field effect of block convergence between Tibetan plateau and Alashan Block, which results in the relative compression and crustal shortening. As for whether the Ebomiao Fault and Qilianshan thrust system are connected in the deep, more work is needed.  相似文献   

17.
The Fodongmiao-Hongyazi Fault is a Holocene active thrust fault, belonging to the middle segment of northern Qilianshan overthrust fault zone, located in the northeastern edge of the Tibet plateau. The Hongyapu M7(1/4) earthquake in 1609 AD occurred on it. A few paleo-seismology studies were carried out on this fault zone. It was considered that four paleoearthquakes occurred on the Fodongmiao-Hongyazi Fault between(6.3±0.6) ka BP and(7.4±0.4) ka BP, in(4.3±0.3) ka BP, in(2.1±0.1) ka BP and in 1609 AD. The occurrences of the earthquakes suggested the quasi-periodic characteristic with a quasi-periodic recurrence interval between 1 600~2 500a(Institute of Geology, State Seismological Bureau, Lanzhou Institute of Seismology, State Seismological Bureau. 1993; Liu et al., 2014). There was no direct evidence for the Hongyapu M7(1/4) earthquake in 1609 AD from trench research in the previous studies. Great uncertainty exists because of the small number of the chronology data, as a few TL and OSL measurement data and several14 C data, and it was insufficient to deduce the exact recurrence interval for the paleoearthquakes. Five trenches were excavated and cleared up respectively in the eastern segment, middle segment and western segment along the Fodongmiao-Hongyazi Fault. After detail study on the trench profiles, the sedimentary characteristics, sequence relationship of the stratigraphical units, and fault-cuts in different stratigraphical units were revealed in these five trenches. Four paleoearthquakes in Holocene were distinguished from the five trenches, and geology evidences of the Hongyapu M7(1/4) earthquake in 1609 AD were also found. More accurate constraint of the occurring time of the paleo-earthquakes since Holocene on the Fodongmiao-Hongyazi Fault is provided by the progressive constraining method(Mao and Zhang, 1995), according to amounts of 14 C measurement data and OLS measurement data of the chronology samples from different stratigraphical units in the trenches. The first paleoevent, E4 occurred 10.6ka BP. The next event, E3 occurred about 7.1ka BP. The E2 occurred about 3.4ka BP. The last event, E1 is the Hongyapu M7(1/4) earthquake in 1609 AD. Abounds of proofs for the occurrences of the events of E1, E2 and E3 were found in the trench Tc1, trench Tc2, trench Tc4 and trench Tc3, located in the eastern, middle and western segments of the Fodongmiao-Hongyazi Fault accordingly. It's considered that the events E1, E2 and E3 may cause whole segment rupturing according to the proofs for these three events found together in individual trenches. The event E4 was only found in the trench Tc5 profile in the west of the Xiaoquan village in the eastern segment of the Fodongmiao-Hongyazi Fault. The earthquake rupture characteristics of this event can't be revealed before more detailed subsequent research. The time intervals among the four paleoearthquakes are ca 3.5ka, ca 3.7ka, and ca 3.0ka. The four events are characterized by ca 3.4ka quasi-periodic recurrence interval.  相似文献   

18.
秦岭北麓晚第四纪断层陡坎的初步研究   总被引:4,自引:1,他引:4  
根据航片解译和野外调查,发现在秦岭北麓第四纪松散沉积物中发育有断层陡坎,本文依据对这些陡坎的地质地貌分析、地形剖面测制、探槽揭露及测年数据,讨论了断层陡坎的空间分布和形态学特征、生成时代和断距,评估了秦岭北麓断裂在晚第四纪的活动强度。由断层陡坎高度经过校核获得断距变化范围在1.1至7.9米之间,由此求得秦岭北麓断裂中段全新世中晚期以来平均滑动速率接近1mm/a,西段在眉县一带为0.5mm/a左右。晚更新世以来,发生过3—4次古地震事件  相似文献   

19.
柯坪塔格断裂西段古地震初步研究   总被引:8,自引:1,他引:7       下载免费PDF全文
柯坪塔格断裂位于西南天山柯坪塔格推覆构造的最前缘,以皮羌断裂为界分成东西两段。在柯坪塔格断裂西段开挖了6个规模较大的探槽,6个探槽都揭露出断层,但其中3个探槽的古地震事件不清晰,另外3个探槽有古地震遗迹。通过分析研究,共确定了全新世以来的4次古地震事件:第1次古地震事件发生于距今约12ka,第2次事件发生于距今约8·6ka,第3次事件大致发生于距今约5ka,第4次事件发生于距今(1·73±0.15)ka以来,很可能是1961年西克尔6·8级地震。这4次古地震事件具有约3~5ka的准周期重复特征。天山南麓有5~6排推覆体,每排推覆体的前缘都发育活动逆断裂,它们向下收敛于寒武系底部的滑脱面,因此,天山南麓的地震破裂非常复杂,这4次古地震事件的震级、发震构造等问题都有待于今后的深入研究  相似文献   

20.
The Ganzi-Yushu Fault, the boundary of Bayan Har active tectonic block, Qiantang active tectonic block and Sichuan-Yunan active tectonic block, is a sinistral strike-slip fault zone with intensive Holocene activity. Thus, the study of activity characteristics and rupture behavior of paleoearthquakes in the late Quaternary on the Ganzi-Yushu Fault is of fundamental importance for understanding the future seismic risk of this fault. The southeast section of Ganzi-Yushu Fault is made up of three segments of Ganzi, Manigange and Dengke, where a MS7.3 earthquake in 1866, a MS7.7 earthquake in 1854 and a MS7.3 in 1896 occurred, respectively. There is still lack of in-depth study on the active features and the cascading rupture possibility of these segments, which hindered the evaluation of seismic risk for the southeast section of Ganzi-Yushu Fault. By the means of field geological survey and micro topography measurement, this paper studied the geological and geomorphological features of the southeast section of the Ganzi-Yushu Fault. The results show that the Ganzi and Dengke segments show obvious extension movement, in addition to the left-lateral movement. For Manigange segment, the characteristics of the movement are mainly left-lateral strike-slip and thrusting, and the maximum vertical displacement of the Holocene strata is greater than 2m. In part areas, the movement is normal faulting, which perhaps relates to the left stepping zone in the local stress environment. Therefore, combining the research results such as the fracture distribution in different motion characteristics, rupture behavior of paleoearthquakes, and the distribution of historical earthquake surface ruptures, we divide the southeast section of Ganzi Yushu Fault into Ganzi, Manigange and Dengke segment, and consider the Yakou and the Dengke Basin as the stepovers and the segments' boundaries. As the small scale of impermanent barriers including Dengke Basin and the ridge near Yakou, of which the width is about 1~2km, they may be broken through in great earthquake rupture in future. A trench was excavated in Zhuqing township to investigate the paleoearthquakes on the Manigange segment, radiocarbon dating was employed and 3 paleoseismic events were revealed in the Zhuqing trench, which are the seismic events occurring respectively at 3875~3455BC, after 775BC, and the latest one that ruptured the surface. Compared with the previous results of paleoseismology in the southeast section of Ganzi-Yushu Fault, it is found that the paleoseismic events in the Manigange segment are obviously different with that in Ganzi segment and Dengke segment. Due to the lack of sufficient data on the southeast section of the Ganzi-Yushu Fault, it still needs further discussion whether the cascade-rupturing between these segments exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号