首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).  相似文献   

2.
This study quantifies the Shared Socioeconomic Pathways (SSPs) using AIM/CGE (Asia-Pacific Integrated Assessment/Computable General Equilibrium). SSP3 (regional rivalry) forms the main focus of the study, which is supposed to face high challenges both in mitigation and adaptation. The AIM model has been selected as the model to quantify the SSP3 marker scenario, a representative case illustrating a particular narrative. Multiple parameter assumptions in AIM/CGE were differentiated across the SSPs for quantification. We confirm that SSP3 quantitative scenarios outcomes are consistent with its narrative. Moreover, four key features of SSP3 are observed. First, as SSP3 was originally designed to contain a high level of challenges to mitigation, mitigation costs in SSP3 were relatively high. This results from the combination of high greenhouse gas emissions in the baseline (no climate mitigation policy) scenario and low mitigative capacity. Second, the climate forcing level in 2100 for the baseline scenarios of SSP3 was similar to that of SSP2, whereas CO2 emissions in SSP3 are higher than those in SSP2. This is mainly due to high aerosol emissions in SSP3. A third feature was the high air pollutant emissions associated with weak implementation of air quality legislation and a high level of coal dependency. Fourth, forest area steadily decreases with a large expansion of cropland and pasture land. These characteristics indicate at least four potential uses for SSP3. First, SSP3 is useful for both IAM and impact, adaptation, vulnerability (IAV) analyses to present the worst-case scenario. Second, by comparing SSP2 and SSP3, IAV analyses can clarify the influences of socioeconomic elements under similar climatic conditions. Third, the high air pollutant emissions would be of interest to atmospheric chemistry climate modelers. Finally, in addition to climate change studies, many other environmental studies could benefit from the meaningful insights available from the large-scale land use change resulting in SSP3.  相似文献   

3.
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100.  相似文献   

4.
This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.  相似文献   

5.
This paper describes the possible developments in global energy use and production, land use, emissions and climate changes following the SSP1 storyline, a development consistent with the green growth (or sustainable development) paradigm (a more inclusive development respecting environmental boundaries). The results are based on the implementation using the IMAGE 3.0 integrated assessment model and are compared with a) other IMAGE implementations of the SSPs (SSP2 and SSP3) and b) the SSP1 implementation of other integrated assessment models. The results show that a combination of resource efficiency, preferences for sustainable production methods and investment in human development could lead to a strong transition towards a more renewable energy supply, less land use and lower anthropogenic greenhouse gas emissions in 2100 than in 2010, even in the absence of explicit climate policies. At the same time, climate policy would still be needed to reduce emissions further, in order to reduce the projected increase of global mean temperature from 3 °C (SSP1 reference scenario) to 2 or 1.5 °C (in line with current policy targets). The SSP1 storyline could be a basis for further discussions on how climate policy can be combined with achieving other societal goals.  相似文献   

6.
Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, emissions and mitigation costs of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument, but with five alternative bioenergy and land-use policy architectures. These scenarios are illustrative in nature, and designed to explore trade-offs. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy penalties and constraints, on the other hand, have little effect on food prices, but result in less bioenergy and thus can increase mitigation costs and energy prices.  相似文献   

7.
The agricultural use and conversion of tropical peatlands is considered a major source of land-based greenhouse gas emissions. Thus, the protection and restoration of tropical peatlands has recently turned into an important strategy to mitigate global climate change. Little research exists that has investigated the impacts and dynamics that such climate mitigation efforts evoke in local communities living in and around peatlands. We present insights on this from Sumatra, Indonesia and use a climate justice lens to evaluate local outcomes. We show how an increasingly transnational network of state and non-state actors has become involved in developing new laws, policy programs and land-use agreements on Sumatra’s coastal peatlands, aiming at supposedly win–win low-carbon development pathways. We argue that such efforts are open to much of the same criticism that has been raised regarding previous policies and projects aimed at reducing GHGE from deforestation and forest degradation. These projects disregard local perspectives on development, fail to deliver the promised benefits and, through a reconfiguration of local land-use rights, reduce the capabilities of smallholder farmers to benefit from their land. In sum, our analysis suggests that recent policies and projects aimed at mitigating GHGE from tropical peatlands contribute to a redistribution of the global climate mitigation burden onto smallholder farmers in Indonesia. This occurs through their threefold assignment to protect forests, prevent fires and help restore degraded peatlands.  相似文献   

8.
Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomic Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability.  相似文献   

9.
Biodiversity footprints quantify the impacts on ecosystems caused by final consumption in a region, accounting for imports and exports. Up to now, footprint analyses have typically been applied to analyze past or present consumption patterns. Here, we quantify future land-based biodiversity footprints associated with three diverging Shared Socio-economic Pathways (SSPs), using loss in Biodiversity Intactness Index (BII) as an indicator of biodiversity loss. For each SSP, we retrieved socio-economic and land use projections to 2100 from the IMAGE-MAGNET model and calculated associated biodiversity footprints for seven aggregated world regions. We then compared these with the functional diversity component of the biosphere integrity planetary boundary. Our results indicate that the global land-based biodiversity impact stays below the boundary (tentatively set at 90% of original BII) in all scenario-year combinations. Contrastingly, the per capita boundary is transgressed in one, four and five out of the seven world regions in 2100 for SSP1 (‘sustainability’), SSP2 (‘middle of the road’) and SSP3 (‘regional rivalry’), respectively. These results indicate a strong difference in the biodiversity impact of final consumption between the regions and between SSPs. Even in the ‘sustainability’ scenario, the per capita biodiversity footprint of consumption in North America needs to be reduced to meet the per capita boundary. Thus, policy-making to safeguard the environment would benefit from adopting region-specific strategies: focusing on realizing agricultural efficiency gains in regions with unexploited potential, while focusing on promoting dietary changes towards less animal-based consumption in regions with limited potential for additional efficiency gains.  相似文献   

10.
The climate change research community’s shared socioeconomic pathways (SSPs) are a set of alternative global development scenarios focused on mitigation of and adaptation to climate change. To use these scenarios as a global context that is relevant for policy guidance at regional and national levels, they have to be connected to an exploration of drivers and challenges informed by regional expertise.In this paper, we present scenarios for West Africa developed by regional stakeholders and quantified using two global economic models, GLOBIOM and IMPACT, in interaction with stakeholder-generated narratives and scenario trends and SSP assumptions. We present this process as an example of linking comparable scenarios across levels to increase coherence with global contexts, while presenting insights about the future of agriculture and food security under a range of future drivers including climate change.In these scenarios, strong economic development increases food security and agricultural development. The latter increases crop and livestock productivity leading to an expansion of agricultural area within the region while reducing the land expansion burden elsewhere. In the context of a global economy, West Africa remains a large consumer and producer of a selection of commodities. However, the growth in population coupled with rising incomes leads to increases in the region’s imports. For West Africa, climate change is projected to have negative effects on both crop yields and grassland productivity, and a lack of investment may exacerbate these effects. Linking multi-stakeholder regional scenarios to the global SSPs ensures scenarios that are regionally appropriate and useful for policy development as evidenced in the case study, while allowing for a critical link to global contexts.  相似文献   

11.
12.
Agriculture is responsible for 25?C30% of global anthropogenic greenhouse gas (GHG) emissions but has thus far been largely exempted from climate policies. Because of high monitoring costs and comparatively low technical potential for emission reductions in the agricultural sector, output taxes on emission-intensive agricultural goods may be an efficient policy instrument to deal with agricultural GHG emissions. In this study we assess the emission mitigation potential of GHG weighted consumption taxes on animal food products in the EU. We also estimate the decrease in agricultural land area through the related changes in food production and the additional mitigation potential in devoting this land to bioenergy production. Estimates are based on a model of food consumption and the related land use and GHG emissions in the EU. Results indicate that agricultural emissions in the EU27 can be reduced by approximately 32 million tons of CO2-eq with a GHG weighted tax on animal food products corresponding to ?60 per ton CO2-eq. The effect of the tax is estimated to be six times higher if lignocellulosic crops are grown on the land made available and used to substitute for coal in power generation. Most of the effect of a GHG weighted tax on animal food can be captured by taxing the consumption of ruminant meat alone.  相似文献   

13.
Biomass is often seen as a key component of future energy systems as it can be used for heat and electricity production, as a transport fuel, and a feedstock for chemicals. Furthermore, it can be used in combination with carbon capture and storage to provide so-called “negative emissions”. At the same time, however, its production will require land, possibly impacting food security, land-based carbon stocks, and other environmental services. Thus, the strategies adopted in the supply, conversion, and use of biomass have a significant impact on its effectiveness as a climate change mitigation measure. We use the IMAGE 3.0 integrated assessment model to project three different global, long term scenarios spanning different socioeconomic futures with varying rates of population growth, economic growth, and technological change, and investigate the role of biomass in meeting strict climate targets. Using these scenarios we highlight different possibilities for biomass supply and demand, and provide insights on the requirements and challenges for the effective use of this resource as a climate change mitigation measure. The results show that in scenarios meeting the 1.5 °C target, biomass could exceed 20% of final energy consumption, or 115–180 EJPrim/yr in 2050. Such a supply of bioenergy can only be achieved without extreme levels land use change if agricultural yields improve significantly and effective land zoning is implemented. Furthermore, the results highlight that strict mitigation targets are contingent on the availability of advanced technologies such as lignocellulosic fuels and carbon capture and storage.  相似文献   

14.
Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions.  相似文献   

15.
Today, the agricultural sector accounts for approximately 15% of total global anthropogenic emissions, mainly methane and nitrous oxide. Projecting the future development of agricultural non-CO2 greenhouse gas (GHG) emissions is important to assess their impacts on the climate system but poses many problems as future demand of agricultural products is highly uncertain. We developed a global land use model (MAgPIE) that is suited to assess future anthropogenic agricultural non-CO2 GHG emissions from various agricultural activities by combining socio-economic information on population, income, food demand, and production costs with spatially explicit environmental data on potential crop yields. In this article we describe how agricultural non-CO2 GHG emissions are implemented within MAgPIE and compare our simulation results with other studies. Furthermore, we apply the model up to 2055 to assess the impact of future changes in food consumption and diet shifts, but also of technological mitigation options on agricultural non-CO2 GHG emissions. As a result, we found that global agricultural non-CO2 emissions increase significantly until 2055 if food energy consumption and diet preferences remain constant at the level of 1995. Non-CO2 GHG emissions will rise even more if increasing food energy consumption and changing dietary preferences towards higher value foods, like meat and milk, with increasing income are taken into account. In contrast, under a scenario of reduced meat consumption, non-CO2 GHG emissions would decrease even compared to 1995. Technological mitigation options in the agricultural sector have also the capability of decreasing non-CO2 GHG emissions significantly. However, these technological mitigation options are not as effective as changes in food consumption. Highest reduction potentials will be achieved by a combination of both approaches.  相似文献   

16.
Deforestation has contributed significantly to net greenhouse gas emissions, but slowing deforestation, regrowing forests and other ecosystem processes have made forests a net sink. Deforestation will still influence future carbon fluxes, but the role of forest growth through aging, management, and other silvicultural inputs on future carbon fluxes are critically important but not always recognized by bookkeeping and integrated assessment models. When projecting the future, it is vital to capture how management processes affect carbon storage in ecosystems and wood products. This study uses multiple global forest sector models to project forest carbon impacts across 81 shared socioeconomic (SSP) and climate mitigation pathway scenarios. We illustrate the importance of modeling management decisions in existing forests in response to changing demands for land resources, wood products and carbon. Although the models vary in key attributes, there is general agreement across a majority of scenarios that the global forest sector could remain a carbon sink in the future, sequestering 1.2–5.8 GtCO2e/yr over the next century. Carbon fluxes in the baseline scenarios that exclude climate mitigation policy ranged from −0.8 to 4.9 GtCO2e/yr, highlighting the strong influence of SSPs on forest sector model estimates. Improved forest management can jointly increase carbon stocks and harvests without expanding forest area, suggesting that carbon fluxes from managed forests systems deserve more careful consideration by the climate policy community.  相似文献   

17.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

18.
Deforestation, the second largest source of anthropogenic greenhouse gas emissions, is largely driven by expanding forestry and agriculture. However, despite agricultural expansion being increasingly driven by foreign demand, the links between deforestation and foreign demand for agricultural commodities have only been partially mapped. Here we present a pan-tropical quantification of carbon emissions from deforestation associated with the expansion of agriculture and forest plantations, and trace embodied emissions through global supply chains to consumers. We find that in the period 2010–2014, expansion of agriculture and tree plantations into forests across the tropics was associated with net emissions of approximately 2.6 gigatonnes carbon dioxide per year. Cattle and oilseed products account for over half of these emissions. Europe and China are major importers, and for many developed countries, deforestation emissions embodied in imports rival or exceed emissions from domestic agriculture. Depending on the trade model used, 29–39% of deforestation-related emissions were driven by international trade. This is substantially higher than the share of fossil carbon emissions embodied in trade, indicating that efforts to reduce greenhouse gas emissions from land-use change need to consider the role of international demand in driving deforestation. Additionally, we find that deforestation emissions are similar to, or larger than, other emissions in the carbon footprint of key forest-risk commodities. Similarly, deforestation emissions constitute a substantial share (˜15%) of the total carbon footprint of food consumption in EU countries. This highlights the need for consumption-based accounts to include emissions from deforestation, and for the implementation of policy measures that cross these international supply-chains if deforestation emissions are to be effectively reduced.  相似文献   

19.
Agricultural GHG mitigation policies are important if ambitious climate change goals are to be achieved, and have the potential to significantly lower global mitigation costs [Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., & Herrero, M. (2013). Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677–690]. In the post-Paris world of ‘nationally determined contributions’ to mitigation, the prospects for agricultural mitigation policies may rest on whether they are in the national economic interest of large agricultural producers. New Zealand is a major exporter of livestock products; this article uses New Zealand as a case study to consider the policy implications of three global policy scenarios at the global, national and farm levels. Building on global modelling, a model dairy farm and a model sheep and beef farm are used to estimate the changes in profit when agricultural emissions are priced and mitigated globally or not, and priced domestically or not, in 2020. Related to these scenarios is the metric or GHG exchange rate. Most livestock emissions are non-CO2, with methane being particularly sensitive to the choice of metric. The results provide evidence that farm profitability is more sensitive to differing international policy scenarios than national economic welfare. The impact of the choice of metric is not as great as the impact of whether other countries mitigate agricultural emissions or not. Livestock farmers do best when agricultural emissions are not priced, as livestock commodity prices rise significantly due to competition for land from forestry. However, efficient farmers may still see a rise in profitability when agricultural emissions are fully priced worldwide.

Policy relevance

Exempting agricultural emissions from mitigation significantly increases the costs of limiting warming to 2 °C, placing the burden on other sectors. However, there may be a large impact on farmers if agricultural emissions are priced domestically when other countries are not doing the same. The impacts of global and national climate policies on farmers need to be better understood in order for climate policies to be politically sustainable. Transitional assistance that is not linked to emission levels could help, as long as the incentives to mitigate are maintained. In the long run, efficient farmers may benefit from climate policy; international efforts should focus on mitigation options and effective domestic policy development, rather than on metrics.  相似文献   

20.
Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号