首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A global spectral barotropic ocean model is introduced to describe the depth-averaged flow. The equations are based on vorticity and divergence (instead of horizontal momentum); continents exert a nearly infinite drag on the fluid. The coding follows that of spectral atmospheric general circulation models using triangular truncation and implicit time integration to provide a first step for seamless coupling to spectral atmospheric global circulation models and an efficient method for filtering of ocean wave dynamics. Five experiments demonstrate the model performance: (i) Bounded by an idealized basin geometry and driven by a zonally uniform wind stress, the ocean circulation shows close similarity with Munk’s analytical solution. (ii) With a real land–sea mask the model is capable of reproducing the spin-up, location and magnitudes of depth-averaged barotropic ocean currents. (iii) The ocean wave-dynamics of equatorial waves, excited by a height perturbation at the equator, shows wave dispersion and reflection at eastern and western coastal boundaries. (iv) The model reproduces propagation times of observed surface gravity waves in the Pacific with real bathymetry. (v) Advection of tracers can be simulated reasonably by the spectral method or a semi-Langrangian transport scheme. This spectral barotropic model may serve as a first step towards an intermediate complexity spectral atmosphere–ocean model for studying atmosphere–ocean interactions in idealized setups and long term climate variability beyond millennia.  相似文献   

2.
On ensemble prediction of ocean waves   总被引:1,自引:0,他引:1  
The numerical ensemble prediction is a well accepted method for improving the performance of atmospheric models. In the context of ocean wave modeling little has been researched or documented about this technique. An essential study of the method of ensemble prediction applied to deep water waves has been carried out. A framework is defined for obtaining perturbations of the directional wave spectra and for employing an ensemble of wind fields generated by an atmospheric model. The third-generation global wave model WAM is used with real atmospheric conditions to investigate the effect on wave predictions of perturbed initial conditions and atmospheric forcing. Due to spectral shape stabilisation, perturbing wave initial conditions has limited utility in ensemble prediction. However, the members could be used in wave data assimilation schemes in an interactive way. Using ensembles of the atmospheric condition can generate diverging solutions, justifying the ensemble procedure by itself. In the cases studied, it is observed that the ensemble mean outperformed the other members. The solution behaviour suggests using a lower-order approximation of the model to generate ensemble members with less computational cost.  相似文献   

3.
The article deals with the influence of wind and atmospheric pressure on the barotropic variability of the Antarctic Circumpolar Current (ACC). This effect is studied using a global barotropic model under idealized and realistic atmospheric forcings. The results of barotropic modeling demonstrate that variations in the wind forcing over the ACC, together with the effects of the topography and coastline, lead to the variability in the meridional water flux in the Southern Ocean. The variability of these fluxes is negatively correlated with the wind strength over the ACC. A possible link between the short-period variability of the water flux in the Pacific sector of the Southern Ocean and El Niño is demonstrated using 3D ocean modeling and correlation analysis. It is shown that the variability of the meridional water flux caused by atmospheric perturbations over the ACC can lead to short-period density anomalies in the Southern Ocean north of 47°S, which later can be transferred to low latitudes by means of the wave mechanism described in [15] and strongly influence the tropical region.  相似文献   

4.
关皓  周林  王汉杰  景丽 《海洋学报》2008,30(4):30-38
利用LINUX操作系统下的进程通讯(IPC)技术将中尺度大气模式MM5(V3)与第三代海浪模式WW3进行双向耦合,建立考虑大气-海浪相互作用的风浪耦合模式,在耦合模式中引入3种海表粗糙度参数化方案,通过对一次热带气旋过程的模拟,研究大气-海浪相互作用对热带气旋系统的影响及耦合模式对海表粗糙度参数化方案的敏感性。结果表明:LINUX系统下的进程通讯技术可以方便有效地实现大气和海浪模式的双向耦合,模式运行稳定;耦合模式能够较好的模拟热带气旋的发展和演变过程及其影响下海浪场的分布和演变,模拟结果对海表粗糙度参数化方案较敏感;海浪的反馈作用同时影响了海气间的动力和热力作用过程,不同的海表粗糙度参数化方案下,海浪对两种作用过程不同的影响程度决定了其对气旋系统强度的影响。  相似文献   

5.
The role of surface waves in the ocean mixed layer   总被引:7,自引:6,他引:1  
Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under - prediction of the ,nixing layer (ML) depth and an over - prediction of the sea surface temperature (SST), particularly during the summer season. As the ocean surface layer determines the lower boundary conditions of the atmosphere, this deficiency has severely limited the performance of the coupled ocean - atmospheric models and hence the climate studies. To overcome this shortcoming, a new parameterization for the wave effects in the ML model that will correct this systematic error of insufficient mixing. The new scheme has enabled the mixing layer to deepen, the surface excessive heating to be corrected, and an excellent agreement with observed global climatologic data. The study indicates that the surface waves are essential for ML formation, and that they are the primer drivers of the upper ocean dynamics; therefore, they are critical for climate studies.  相似文献   

6.
Numerical experiments with a multi-level general circulation model have been performed to investigate basic processes of westward propagation of Rossby waves excited by interannual wind stress forcing in an idealized western North Pacific model with ocean ridges. When the wind forcing with an oscillation period of 3 years is imposed around 180°E and 30°N, far from Japan, barotropic waves excited by the wind can hardly cross the ridges, such as the Izu-Ogasawara Ridge. On the other hand, a large part of the first-mode baroclinic waves are transmitted across the ridges, having net mass transport. The propagation speed of the first-mode baroclinic wave is accelerated (decelerated) when an anticyclonic (cyclonic) circulation is formed at the sea surface, due to a deeper (shallower) upper layer, and to southward (slightly northward) drift of the circulation. Thus, when the anticyclonic circulation is formed on the northern side of the cyclonic one, they propagate almost together. The second-mode baroclinic waves converted from the first-mode ones on the ridges arrive south of Japan, although their effects are small. The resulting volume transport variation of the western boundary current (the Kuroshio) reaches about 60% of the Sverdrup transport variability estimated from the wind stress. These characteristics are common for the interannual forcing case with a longer oscillation period. In the intraseasonal and seasonal forcing cases, on the other hand, the transport variation is much smaller than those in the interannual forcing cases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries; and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models’ time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave field differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase.  相似文献   

8.
海浪搅拌混合对北太平洋海表面温度模拟的影响   总被引:1,自引:1,他引:0  
利用NCEP再分析风场驱动WAVEWATCH III海浪模式对北太平洋海域的海浪过程进行模拟,利用浮标观测资料对模拟出的海浪要素有效波高进行验证,发现他们之间具有很好的一致性。基于模式输出的有效波高等波浪要素,利用特征波参数化理论,在海洋环流模式中引入海浪搅拌混合作用,分析其对北太平洋海表面温度模拟的影响,初步数值模拟结果表明,sbPOM模式在考虑海浪搅拌混合作用以后,模拟精度进一步提升,这对提供一个准确的大气模式下边界条件具有重要作用。  相似文献   

9.
Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air–sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air–sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).  相似文献   

10.
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989–2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997–1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.  相似文献   

11.
A set of 44-year (1958–2001) homogeneous and high-resolution hindcasts of atmospheric, sea level residuals, and wave states was performed for the Mediterranean Basin within the framework of the HIPOCAS European Project. To this aim, different numerical models were used. As a first step, a Mediterranean high-resolution atmospheric database, suitable to provide realistic and homogeneous forcing for ocean hindcast runs was generated. The HIPOCAS atmospheric database was created by means of dynamical downscaling from the global reanalysis NCEP, using for that the limited area model SN-REMO along with a spectral nudging technique. In a second stage, different Mediterranean oceanic hindcasts were performed. On one hand a long-term database of sea state over the western Mediterranean was generated by means of the wave model WAM and on the other hand a sea level residual database containing storm surge events was obtained from a long-term integration of the HAMSOM model over the entire basin. The three different hindcast runs have been exhaustively validated. On that score, various simulated parameters have been compared to both satellite and in situ measurements. Such comparisons provide a measure of the skills of the different simulated fields to realistically reproduce the observed features. Once these skills are evaluated, a study of the ocean and atmospheric climate trends as well as the interannual variability for the whole 44-year period was carried out with the hindcasted data. The reliability of the data as shown by its comparison to measurements and a proven temporal homogeneity over the 44 years of simulation make the Mediterranean HIPOCAS ocean–atmosphere hindcasted database a useful tool for studies focused on regional climatic variability, as well as for further applications in coastal and environmental decision processes in the Mediterranean area.  相似文献   

12.
中国物理海洋学研究70年:发展历程、学术成就概览   总被引:2,自引:2,他引:0  
本文概略评述新中国成立70年来物理海洋学各分支研究领域的发展历程和若干学术成就。中国物理海洋学研究起步于海浪、潮汐、近海环流与水团,以及以风暴潮为主的海洋气象灾害的研究。随着国力的增强,研究领域不断拓展,涌现了大量具有广泛影响力的研究成果,其中包括:提出了被国际广泛采用的“普遍风浪谱”和“涌浪谱”,发展了第三代海浪数值模式;提出了“准调和分析方法”和“潮汐潮流永久预报”等潮汐潮流的分析和预报方法;发现并命名了“棉兰老潜流”,揭示了东海黑潮的多核结构及其多尺度变异机理等,系统描述了太平洋西边界流系;提出了印度尼西亚贯穿流的南海分支(或称南海贯穿流);不断完善了中国近海陆架环流系统,在南海环流、黑潮及其分支、台湾暖流、闽浙沿岸流、黄海冷水团环流、黄海暖流、渤海环流,以及陆架波方面均取得了深刻的认识;从大气桥和海洋桥两个方面对太平洋–印度洋–大西洋洋际相互作用进行了系统的总结;发展了浅海水团的研究方法,基本摸清了中国近海水团的分布和消长特征与机制,在大洋和极地水团分布及运动研究方面也做出了重要贡献;阐明了南海中尺度涡的宏观特征和生成机制,揭示了中尺度涡的三维结构,定量评估了其全球物质与能量输运能力;基本摸清了中国近海海洋锋的空间分布和季节变化特征,提出了地形、正压不稳定和斜压不稳定等锋面动力学机制;构建了“南海内波潜标观测网”,实现了对内波生成–演变–消亡全过程机理的系统认识;发展了湍流的剪切不稳定理论,提出了海流“边缘不稳定”的概念,开发了海洋湍流模式,提出了湍流混合参数化的新方法等;在海洋内部混合机制和能量来源方面取得了新的认识,并阐述了混合对海洋深层环流、营养物质输运等过程的影响;研发了全球浪–潮–流耦合模式,推出一系列海洋与气候模式;发展了可同化主要海洋观测数据的海洋数据同化系统和用于ENSO预报的耦合同化系统;建立了达到国际水准的非地转(水槽/水池)和地转(旋转平台)物理模 型实验平台;发展了ENSO预报的误差分析方法,建立了海洋和气候系统年代际变化的理论体系,揭示了中深层海洋对全球气候变化的响应;初步建成了中国近海海洋观测网;持续开展南北极调查研究;建立了台风、风暴潮、巨浪和海啸的业务化预报系统,为中国气象减灾提供保障;突破了国外的海洋技术封锁,研发了万米水深的深水水听器和海洋光学特性系列测量仪器;建立了溢油、危险化学品漂移扩散等预测模型,为伴随海洋资源开发所带来的风险事故的应急处理和预警预报提供科学支撑。文中引用的大量学术成果文献(每位第一作者优选不超过3篇)显示,经过70年的发展,中国物理海洋学研究培养了一支实力雄厚的科研队伍,这是最宝贵的成果。这支队伍必将成为中国物理海洋学研究攀登新高峰的主力军。  相似文献   

13.
14.
A new three-dimensional numerical model is derived through a wave average on the primitive N-S equations, in which both the"Coriolis-Stokes forcing" and the"Stokes-Vortex force" are considered. Three ideal experiments are run using the new model applied to the Princeton ocean model (POM). Numerical results show that surface waves play an important role on the mixing of the upper ocean. The mixed layer is enhanced when wave effect is considered in conjunction with small Langmuir numbers. Both surface wave breaking and Stokes production can strengthen the turbulent mixing near the surface. However, the influence of wave breaking is limited to a thin layer, but Stokes drift can affect the whole mixed layer. Furthermore, the vertical mixing coefficients clearly rise in the mixed layer, and the upper ocean mixed layer is deepened especially in the Antarctic Circumpolar Current when the model is applied to global simulations. It indicates that the surface gravity waves are indispensable in enhancing the mixing in the upper ocean, and should be accounted for in ocean general circulation models.  相似文献   

15.
中等海况下,星载合成孔径雷达(Synthetic Aperture Radar,SAR)已经广泛应用于海洋动力环境要素的监测(风场、波浪、流场)。近年来,SAR高海况遥感,尤其是探测台风海面风场、巨浪、流场已经成为国内外研究热点,并突破了一些关键技术。利用SAR多极化成像模式对海观测和新发展的地球物理模式函数,可以提取高海况下的海面风速、风向、有效波高、流速和流向等海洋表面关键物理参数。这些环境要素可以用于海洋灾害监测预警;为海洋和大气数值模式提供准确的初始场和同化源,改进模式预报精度;为研究全球气候变化提供有力的观测依据。  相似文献   

16.
The present study documents the atmosphere–ocean interaction in interannual variations over the South China Sea (SCS). The atmosphere–ocean relationship displays remarkable seasonality and regionality, with an atmospheric forcing dominant in the northern and central SCS during the local warm season, and an oceanic forcing in the northern SCS during the local cold season. During April–June, the atmospheric impact on the sea surface temperature (SST) change is characterized by a prominent cloud-radiation effect in the central SCS, a wind-evaporation effect in the central and southern SCS, and a wind-driven oceanic effect along the west coast. During November–January, regional convection responds to the SST forcing in the northern SCS through modulation of the low-level convergence and atmospheric stability. Evaluation of the precipitation–SST and precipitation–SST tendency correlation in 24 selected models from CMIP5 indicates that the simulated atmosphere–ocean relationship varies widely among the models. Most models have the worst performance in spring. On average, the models simulate better the atmospheric forcing than the oceanic forcing. Improvements are needed for many models before they can be used to understand the regional atmosphere–ocean interactions in the SCS region.  相似文献   

17.
A number of numerical experiments were performed with the use of the middle and upper atmosphere model (MUAM). In these experiments, the atmospheric response to an external excitation in the troposphere was calculated and internal stratospheric vacillations caused by the interaction of stationary planetary waves (SPWs) with the zonal mean flow were modeled. The MUAM is shown to well reproduce the known high-frequency global resonance responses of the atmosphere to an external excitation. The results of modeling show that the stratospheric vacillations caused by the interaction of SPWs and the mean flow are responsible for the generation of low-frequency normal modes in the lower and middle atmosphere. The activity of normal atmospheric modes in the troposphere and stratosphere is noted to increase simultaneously with the development of sudden stratospheric warmings. However, in order to understand which process is primary, an additional analysis of the results of numerical experiments and stratospheric data is necessary. It is inferred that, for an adequate modeling of stratospheric vacillation cycles, atmospheric general circulation models must be capable of reproducing global resonance properties of the atmosphere.  相似文献   

18.
When considering physical mechanisms for decadal-timescale climate variability in the North Pacific, it is useful to describe in detail the expected response of the ocean to the chaotic atmospheric forcing. The expected response to this white-noise forcing includes strongly enhanced power in the decadal frequency band relative to higher frequencies, pronounced changes in basin-wide climate that resemble regime shifts, preferred patterns of spatial variability, and a depth-dependent profile that includes variability with a standard deviation of 0.2–0.4°C over the top 50–100 m. Weak spectral peaks are also possible, given ocean dynamics. Detecting coupled ocean–atmosphere modes of variability in the real climate system is difficult against the spectral and spatial structure of this ‘null-hypothesis’ of how the ocean and atmosphere interact, especially given the impossibility of experimentally decoupling the ocean from the atmosphere. Turning to coupled ocean–atmosphere models to address this question, a method for identifying coupled modes by using models of increasing physical complexity is illustrated. It is found that a coupled ocean–atmosphere mode accounts for enhanced variability with a time scale of 20 years/cycle in the Kuroshio extension region of the model's North Pacific. The observed Pacific Decadal Oscillation (PDO) has many similarities to the expected noise-forced response and few similarities to the model's coupled ocean–atmosphere variability. However, model deficiencies and some analyses of observations by other workers indicate that the possibility that part of the PDO arises from a coupled ocean–atmosphere mode cannot be ruled out.  相似文献   

19.
In this paper, the nonlinear waves and their barotropic stability in the tropical ocean and atmosphere are studied with the qualitative theory of the ordinary differential equation. The relationship is derived between the stability of nonlinear waves with different frequencies and the basic currents and their horizontal shear in the tropical ocean and atmosphere.  相似文献   

20.
Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyō, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号