首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Baltic Sea has experienced a complex geological history, with notable swings in salinity driven by changes to its connection with the Atlantic and glacio‐isostatic rebound. Sediments obtained during International Ocean Drilling Program Expedition 347 allow the study of the effects of these changes on the ecology of the Baltic in high resolution through the Holocene in areas where continuous records had not always been available. Sites M0061 and M0062, drilled in the Ångermanälven Estuary (northern Baltic Sea), contain records of Holocene‐aged sediments and microfossils. Here we present detailed records of palaeoecological and palaeoenvironmental changes to the Ångermanälven Estuary inferred from diatom, palynomorph and organic‐geochemical data. Based on diatom assemblages, the record is divided into four zones that comprise the Ancylus Lake, Littorina Sea, Post‐Littorina Sea and Recent Baltic Sea stages. The Ancylus Lake phase is initially characterized as oligotrophic, with the majority of primary productivity in the upper water column. This transition to a eutrophic state continues into the Initial Littorina Sea stage. The Initial Littorina Sea stage contains the most marine phase recorded here, as well as low surface water temperatures. These conditions end before the Littorina Sea stage, which is marked by a return to oligotrophic conditions and warmer waters of the Holocene Thermal Maximum. Glacio‐isostatic rebound leads to a shallowing of the water column, allowing for increased benthic primary productivity and stratification of the water column. The Medieval Climate Anomaly is also identified within Post‐Littorina Sea sediments. Modern Baltic sediments and evidence of human‐induced eutrophication are seen. Human influence upon the Baltic Sea begins c. 1700 cal. a BP and becomes more intense c. 215 cal. a BP.  相似文献   

2.
A high-resolution, well-dated dinoflagellate cyst record from a lagoon of the southeastern Swedish Baltic Sea reveals climate and hydrological changes during the Holocene. Marine dinoflagellate cysts occurred initially at about 8600 cal yr BP, indicating the onset of the Littorina transgression in the southeastern Swedish lowland associated with global sea level rise, and thus the opening of the Danish straits. Both the species diversity and the total accumulation rates of dinoflagellate cysts continued to increase by 7000 cal yr BP and then decreased progressively. This pattern reveals the first-order change in local sea level as a function of ice-volume-equivalent sea level rise versus isostatic land uplift. Superimposed upon this local sea level trend, well-defined fluctuations of the total accumulation rates of dinoflagellate cysts occurred on quasi-1000- and 500-yr frequency bands particularly between 7500 and 4000 cal yr BP, when the connection between the Baltic basin and the North Atlantic was broader. A close correlation of the total accumulation rates of dinoflagellate cysts with GISP2 ice core sea-salt ions suggests that fluctuations of Baltic surface conditions during the middle Holocene might have been regulated by quasi-periodic variations of the prevailing southwesterly winds, most likely through a system similar to the dipole oscillation of the modern North Atlantic atmosphere.  相似文献   

3.
4.
Early to late Holocene sediments from core F80, Fårö Deep, Baltic Sea, are investigated for their palynomorph composition and dinoflagellate cyst record to map variations in sea‐surface‐water salinity and palaeoproductivity during the past 6000 years. The F80 palynomorph assemblages are subdivided into four Assemblage Zones (AZs) named A to D. The transition from the stratigraphically oldest AZ A to B reflects a marked increase in palaeoproductivity and a gradual increase in surface‐water salinity over the ~1500 years between the Initial Littorina (former Mastogloia Sea Stage) and Littorina Sea Stage. A period with maximum sea‐surface salinity is recorded within the overlying AZ C from 7200 to 5200 cal. a BP, where the process length of Operculodinium centrocarpum indicates that average salinities were probably the highest (~15–17 versus 7.5 psu today) since the last glaciation. The change from AZ C to D correlates with a shift from laminated to non‐laminated sediments, and the dinoflagellate cyst assemblages suggest that the surface‐ and the deep‐water environment altered from c. 5250 cal. a BP, with less productivity in the surface water and more oxygenated conditions in the deep water. Here we demonstrate that past regional changes in surface salinity, primary productivity and deep‐water oxygenation status in the Baltic Sea can be traced by mapping overall palynomorph composition, dinoflagellate cyst assemblages and variations in the process length of O. centrocarpum in relation to periods of laminated/non‐laminated sedimentation and proportion of organic‐matter in the sediments. An understanding of past productivity changes is particularly important to better understand present‐day environmental changes within the Baltic Sea region.  相似文献   

5.
At the end of the Pleistocene, environmental conditions in the Baltic Basin were affected by the melting glaciers and the resultant freshwater bodies. In contrast to various seal species, there is no subfossil evidence of the harbour porpoise (Phocoena phocoena) from the early Holocene stages of the Baltic Basin. This article is an attempt to clarify the colonization of the harbour porpoise into the Baltic Sea and to reveal the ecological background of this process. All published Holocene subfossil records from the porpoise in the Baltic region were sought and supplemented with those from museums and zoological collections; 148 records document the porpoise's occurrence. The earliest records of the harbour porpoise date from the time between 9600 and 7000 cal. yr BP and originate from the early and middle Mesolithic coastal settlements of the Maglemose and Kongemose culture during the early Littorina stage. Around 7500–5700 cal. yr BP, the porpoise is recorded frequently at many localities from late Mesolithic (Ertebølle culture) and Neolithic in the coastal areas of the western Baltic Sea, as well as for the first time in the Gulfs of Bothnia and Finland. Since 4000 cal. yr BP, P. phocoena has only been recorded in the western Baltic. We suggest that immigration and dispersion of P. phocoena into the Baltic Sea was connected with the Littorina transgression beginning around 9000 cal. yr BP. The continuous influx of seawater and the associated ecological changes led to a new, very species‐rich, fish community and adequate living conditions for the harbour porpoise.  相似文献   

6.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

7.
We present evidence of a submerged early Holocene landscape off the Blekinge coastline in the Baltic Sea, dating to the Yoldia Sea and Initial Littorina Sea Stages when the water level was lower than at present. 14C dated wood remains obtained by surveillance diving and new archaeological findings in combination with bathymetric analyses and interpolations between other sites across the Baltic Sea were used for refinement of the shoreline displacement history of the region. The new results reveal a Yoldia Sea lowstand level at 20 m b.s.l., a subsequent Ancylus Lake highstand at 3 m a.s.l., and then a period of relatively stable water level at about 4 m b.s.l. during the Initial Littorina Sea Stage, several metres lower than previously concluded. The refined shoreline displacement record was used for palaeo‐reconstructions of the study area during four key periods, the Yoldia Sea lowstand phase, the Ancylus Lake transgression phase, the Ancylus Lake highstand phase and the Initial Littorina Sea lowstand phase, using elevation data and map algebra functions. A flow accumulation algorithm was used for reconstruction of the now submerged prehistoric river network in order to identify areas of high archaeological potential. Our revised shoreline displacement record, and especially its lowstand period during the Initial Littorina Sea Stage around 9500–8500 cal. a BP, raises future demands not only for specific archaeological shallow‐water surveys down to 4 m b.s.l. in the area, but also for a renewed cultural heritage management strategy. The results of this study fill an important gap in the early Holocene part of the shoreline displacement history of Blekinge, contributing to its completion since the deglaciation, which is unique for the Baltic Sea.  相似文献   

8.
High-resolution palaeoecological proxies of pollen, macrofossils and diatoms from an isolation lake provide a long-term record of the Holocene landscape history and shoreline displacement on the Biskopsmåla Peninsula in central Blekinge, SE Sweden. During the Preboreal/Boreal transition, the peninsula was sparsely vegetated by woodlands, along with lateglacial dwarf shrub/steppe communities. The lake basin was isolated from the shallow Yoldia Sea during this time. The regional climate improved from 10 700 cal. BP, evident as progressive expansion of Pinus-dominated mixed forest with deciduous trees. The lake basin was probably connected with the Ancylus Lake during the period 10700–10 100 cal. BP. Subsequently the basin became isolated again, corresponding to the Early Littorina Sea phase. Replacement of freshwater diatoms by those with brackish-water affinity at 8100 cal. BP indicates the initial transgression of the Littorina Sea in this basin. But not until 7500 cal. BP were brackish conditions fully established. Peaks of brackish-marine diatoms and dinoflagellates during 7500–7000 cal. BP indicate increased saltwater inflow to the Baltic Sea in response to global meltwater pulse 3. However, interactive changes in seagrass and stonewort macrofossil concentrations suggest that three minor transgressions during 5900–5300, 5000–4700 and 4400–4000 cal. BP occurred locally, associated with centennial-scale variations in regional wind pattern or coastal storminess. By 3000 cal. BP, the lake basin was finally isolated from the Baltic, and thereafter the landscape on the peninsula became gradually more influenced by human activities.  相似文献   

9.
Rößler, D., Moros, M. & Lemke, W. 2010: The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas, 10.1111/j.1502‐3885.2010.00180.x. ISSN 0300‐9483. The Littorina transgression is one of the most pronounced environmental events in the Holocene history of the Baltic Sea. It changed the hydrographic system from the freshwater Ancylus Lake into the brackish‐marine Littorina Sea. Here, 18 cores from two western Baltic basins, Mecklenburg Bay and the Arkona Basin, were analysed. We show that, besides biological indicators, sedimentary organic carbon, C/N ratio, bulk δ13C isotope values and carbonate content display clearly the transition from Ancylus Lake to the Littorina Sea. The first appearances of benthic foraminifers, marine molluscs and ostracods represent the onset of brackish‐marine conditions in the bottom waters. Central Arkona Basin sediments display more abrupt shifts in geochemical parameters and microfossil records at the transition from Ancylus Lake to the Littorina Sea than those from Mecklenburg Bay. Mixing of reworked Ancylus material with Littorina Sea stage material was stronger in Mecklenburg Bay, resulting in less pronounced proxy parameter changes and older bulk material dates. Radiocarbon dating of both calcareous material (benthic foraminifers, mollusc shells) and bulk fractions at the transgression horizon shows large age discrepancies. Based on calcareous fossil dates it appears that marine waters began to enter Mecklenburg Bay c. 8000 cal. a BP. In the Arkona Basin the first marine signals are recorded approximately 800 years later, c. 7200 cal. a BP. This indicates a transgression pathway via the Great Belt into Mecklenburg Bay and then into the Arkona Basin.  相似文献   

10.
Integrated palaeoecological studies of two fiord sediment sequences in the province of Blekinge, SE Sweden, covering the time span 11,000–5000 cal BP, reveal the timing and the environment for the Ancylus Lake/Littorina Sea transition 9800–8500 cal BP. The first ingression of saline water into the Baltic Sea through the Danish Straits occurred earlier than formerly assumed. New evidence, particularly mineral magnetic and palaeobotanical analyses, demonstrate that on the general trend of the eustatically caused Littorina transgression several minor fluctuations of the water level can be identified between 8500 and 5000 cal years BP. A distinct regression phase around 8100 cal BP is correlated with the Greenland ice-core cold event dated to 8200 ice-core years BP. This is described as a regional climatic catastrophe for the Baltic Sea region. The coastal stratigraphy is compared with the offshore stratigraphy earlier studied. A tentative shore displacement curve for Early and Middle Holocene is presented.  相似文献   

11.
The harp seal ( Phoca groenlandica ) is a low-arctic species that is currently a rare visitor to Danish waters. However, bone remains from archaeological and geological deposits in Denmark and the Baltic Sea testify to a regular presence of harp seals in this region during the mid-Holocene. The paradox of the presence of a low-arctic seal species in southern Scandinavia during the mid-Holocene thermal maximum has been widely discussed. In order to improve the Holocene chronology for the presence of harp seal in Denmark, 24 bone remains of the species were radiocarbon dated. The oldest date is around 4100 cal. yr BC, indicating that the harp seal arrived several millennia after fully marine conditions were established in Danish waters. The majority of the dated specimens fall within two age groups, one centred around 3900 cal. yr BC (11 dates), the other around 2700 cal. yr BC (7 dates). It is argued that these two groups may reflect periods with suitable living conditions for the harp seal in Danish waters and that this is connected with an enhanced inflow of high-salinity North Sea water and higher biological productivity. Six dates show a scattered distribution between c . 1400 cal. yr BC and c . AD 1000, suggesting sporadic visits of the harp seal to Danish waters during the late Holocene.  相似文献   

12.
Hutri, K.-L., Heinsalu, A., Kotilainen, A. T. & Ojala, A. E. K. 2007 (January): Dating early Holocene palaeoseismic event(s) in the Gulf of Bothnia, Baltic Sea. Boreas , Vol. 36, pp. 56–64. Oslo. ISSN 0030–9483.
Deformation structures in submarine Holocene sediments caused by palaeoseismicity have recently been found in the Olkiluoto area, Gulf of Bothnia, Baltic Sea, within old fracture zones of bedrock. In this study, the palaeoseismic event(s) was dated and the palaeoenvironment was characterized using palaeomagnetic, biostratigraphical and lithostratigraphical methods, thereby enhancing the reliability of the chronology. The variations in the inclination and declination of the Olkiluoto sediment core showed very good correlation with the palaeosecular variations recorded in the annually laminated long lake sediment record from Lake Nautajarvi in central Finland. Combined litho-, bio- and palaeomagnetic stratigraphy revealed an age estimation of 10 650 to 10 200 cal. yr BP for the palaeoseismic event(s), which coincides with postglacial bedrock faulting in northern Fennoscandia.  相似文献   

13.
We reconstructed late Holocene fluctuations of Kluane Lake in Yukon Territory from variations in bulk physical properties and carbon and nitrogen elemental and isotopic abundances in nine sediment cores. Fluctuations of Kluane Lake in the past were controlled by changes in climate and glaciers, which affected inflow of Slims and Duke rivers, the two largest sources of water flowing into the lake. Kluane Lake fluctuated within a narrow range, at levels about 25 m below the present datum, from about 5000 to 1300 cal yr BP. Low lake levels during this interval are probably due to southerly drainage of Kluane Lake to the Pacific Ocean, opposite the present northerly drainage to Bering Sea. Slims River, which today is the largest contributor of water to Kluane Lake, only rarely flowed into the lake during the period 5000 to 1300 cal yr BP. The lake rose 7-12 m between 1300 and 900 cal yr BP, reached its present level around AD 1650, and within a few decades had risen an additional 12 m. Shortly thereafter, the lake established a northern outlet and fell to near its present level.  相似文献   

14.
Changing content of detrital input in laminated sediments traced by XRF scanning and microfacies analyses reflect prominent variations in sedimentation processes in the Aral Sea. A high-resolution record of titanium from a core retrieved in the northwestern Large Aral Sea allows a continuous reconstruction of wind strength and frequency in western Central Asia for the past 1500 yr. During AD 450–700, AD 1210–1265, AD 1350–1750 and AD 1800–1975, detrital inputs (bearing titanium) are high, documenting an enhanced early spring atmospheric circulation associated with an increase in intensity of the Siberian High pressure system over Central Asia. In contrast, lower titanium content during AD 1750–1800 and AD 1980–1985 reflects a diminished influence of the Siberian High during early spring with a reduced atmospheric circulation. A moderate circulation characterizes the time period AD 700–1150. Unprecedented weakened atmospheric circulation over western Central Asia are inferred during ca. AD 1180–1210 and AD 1265–1310 with a considerable decrease in dust storm frequency, sedimentation rates, lamination thickness and detrital inputs (screened at 40-μm resolution). Our results are concurrent with changes in the intensity of the Siberian High during the past 1400 yr as reported in the GISP2 Ice Core from Greenland.  相似文献   

15.
During and after deglaciation, Lake Vättern developed from a proglacial lake situated at the westernmost rim of the Baltic Ice Lake (BIL), into a brackish water body connecting the North Sea and the Baltic Sea, and finally into an isolated freshwater lake. Here we present geochemical and mineralogical data from a 70‐m composite sediment core recovered in southern Lake Vättern. Together with a radiocarbon age model of this core, we are able to delineate the character and timing of the different lake stages. In addition to a common mineralogical background signature seen throughout the sediment core, the proglacial sediments bear a calcite imprint representing ice‐sheet transported material from the limestone bedrock that borders the lake basin in the northeast. The proglacial fresh to brackish water transition is dated to 11 480±290 cal. a BP and is in close agreement with other regional chronologies. The brackish period lasted c. 300 years and was followed by a c. 1600 year freshwater period before the Vättern basin became isolated from the Initial Littorina Sea. Decreasing detrital input, increasing δ13C values and the appearance of diatoms in the upper 15 m of the sediment succession are interpreted as an overall increase in biological productivity. This mode of sedimentation continues until the present and is interpreted to mark the final isolation of the lake at 9530±50 cal. a BP. Consequently, the isolation of Lake Vättern was not an outcome of the Ancylus Lake regression, but rather because of ongoing continental uplift in the early Littorina period.  相似文献   

16.
To detect climatic linkages between the Baltic Sea, the Skagerrak and the Nordic Seas, we present multi‐proxy reconstructions covering the last 4500 years from three sediment cores taken in the Skagerrak and along the SW Norwegian margin. Foraminiferal assemblages at all three sites show a distinct change at c. 1700 years BP, associated with a transition from absence and rare occurrence of Brizalina skagerrakensis during c. 4500–2300 years BP to its subsequent abundance increase, suggesting a stronger influence of nutrient‐rich water‐masses during the last c. 1700 years. Increased nutrient availability, which probably stimulated higher primary productivity, is further supported by an increase in diatoms, total organic carbon and benthic foraminiferal species indicative of high productivity and carbon fluxes during the last c. 1700 years as compared to c. 4500–2300 years BP. The amplitude of the B. skagerrakensis signal is largest in the central Skagerrak and gradually becomes smaller towards the Norwegian Sea suggesting that the dominant source of the nutrient‐rich water was the brackish outflow from the Baltic Sea. The generally lower abundances of planktonic foraminifera since c. 1700 years BP support the hypothesis of less saline surface water conditions in the Skagerrak. These results agree with other studies, which suggest a stronger Baltic outflow over the last 1700 years coinciding with a general cooling, increased wintertime westerlies bringing more winter precipitation to northern Europe, increased river runoff and higher frequency of floods. The increase in outflow also occurs during deposition of laminated sediments in the deep Baltic Sea. Leakage of dissolved inorganic phosphorus from anoxic sediments, as well as enhanced erosion due to deforestation in combination with higher runoff from Norway, coastal upwelling and more vigorous frontal dynamics may all have contributed to higher nutrient availability within the adjacent Skagerrak during the last 1700 years BP as compared to c. 4500–2300 years BP, when low productivity prevailed in the study area.  相似文献   

17.
The Qarun Lake in the Faiyum Oasis (Egypt) provides a unique record of Holocene environmental and climate change in an arid area largely devoid of fossil proxy records. Multiple lithological, palaeontological and geochemical proxies and 32 radiocarbon dates from the 26‐m‐long core FA‐1 provide a time series of the lake's transformation. Our results confirm that a permanent lake appeared in the Holocene at c. 10 cal. ka BP. The finely laminated lake sediments consist of diatomite, in which diatoms and ostracods together with lower concentrations of ions indicate a freshwater environment at the end of the early and middle Holocene. This freshwater supply was closely associated with regular inflows of the Nile water during flood seasons, when the Intertropical Convergence Zone (ITCZ) migrated northwards in Africa, although it has probably never reached the Faiyum Oasis. Local rainfall, possibly connected with a northern atmospheric circulation, may have been important during winter. Several phases in the lake's evolution are recognized, represented by oscillations between deep open freshwater conditions during more humid climate and shallow fresh to brackish water during drier episodes. After a long freshwater phase, the lake setting has become more brackish since c. 6.2 cal. ka BP as indicated by diatoms and increasing contents of evaporite ions in the sediment. This clearly shows that since that time the lake has occasionally become partly desiccated. This is a result of reduced discharge of the Nile. In the late Holocene the lake was mostly brackish and then gradually turned into a saline lake. This natural process was interrupted about 2.3 cal. ka BP when a man‐made canal facilitated water inflow from the Nile. The examined FA‐1 core can be used as a reference age model of climate change in the Holocene and its impact on the development and decline of ancient civilizations in northeastern Africa.  相似文献   

18.
Lake Ladoga hosts preglacial sediments, although the Eurasian ice sheet overrode the area during the LGM. These sediments were first discovered by a seismic survey and are investigated using a 22.75‐m‐long core. Its upper 13.30 m comprise Holocene and Lateglacial sediments separated from the lower 11.45 m of preglacial sediments by a hiatus. They consist of highly terrigenous lacustrine sediments, which according to OSL dating, were deposited during an early stage of the last ice age (MIS 5). The palynological data allow a first reconstruction of the Early Weichselian environmental history for northwestern Russia. Birch and alder forests with broad‐leaved taxa dominated during MIS 5d (c. 118–113 ka), suggesting a climate more favourable than in the Holocene. A high content of well‐sorted sands and poorly preserved palynomorphs indicates a shallow‐water environment at least temporarily. More fine‐grained sediments and better preserved organic remains suggest deeper water environments at the core location during MIS 5c (c. 113–88 ka). Pine and spruce became dominant, while broad‐leaved taxa started to disappear, especially after c. 90 ka, pointing to a gradual climate cooling. An increase in open herb‐dominated habitats at the beginning of MIS 5b (c. 88–86 ka) reflects a colder and dryer climate. However, later (c. 86–82 ka) pine and spruce again became more common. Birch and alder forests dominated in the area c. 82–80 ka (beginning of MIS 5a). Although open treeless habitats also became more common at this time, a slight increase in hazel may point to somewhat warmer climate conditions coinciding with the beginning of MIS 5a. The studied sediments also contain numerous remains of freshwater algae and cysts of marine and brackish‐water dinoflagellates and acritarchs documenting that the present lake basin was part of a brackish‐water basin during the Early Weichselian, probably as a gulf of the Pre‐Baltic Sea.  相似文献   

19.
Heikkilä, M. & Seppä, H. 2010: Holocene climate dynamics in Latvia, eastern Baltic region: a pollen‐based summer temperature reconstruction and regional comparison. Boreas, Vol. 39, pp. 705–719. 10.1111/j.1502‐3885.2010.00164.x. ISSN 0300‐9483. A pollen‐based summer temperature (Tsummer) reconstruction reveals the Holocene climate history in southeastern Latvia and contributes to the limited understanding of past climate behaviour in the eastern sector of northern Europe. Notably, steady climate warming of the early Holocene was interrupted c. 8350–8150 cal. yr BP by the well‐known 8.2 ka cold event, recorded as a decrease of 0.9 to 1.8 °C in Tsummer. During the Holocene Thermal Maximum, c. 8000–4000 cal. yr BP, the reconstructed summer temperature was ~2.5–3.5 °C higher than the modern reconstructed value, and subsequently declined towards present‐day values. Comparison of the current reconstruction with other pollen‐based reconstructions in northern Europe shows that the 8.2 ka event is particularly clearly reflected in the Baltic region, possibly as a result of distinct climatic and ecological gradients and the sensitivity of the vegetation growth pattern to seasonal temperature change. The new reconstruction also reveals that the Holocene Thermal Maximum was warmer in Latvia than in central Europe and Fennoscandia. In fact, a gradient of increasing positive temperature anomalies is detected from northernmost Fennoscandia towards the south and from the Atlantic coast in Norway towards the continental East European Plain. The dynamics of the temperate broadleaved tree species Tilia and Quercus in Latvia and adjacent northern Europe during the mid‐Holocene give complementary information on the multifaceted climatic and environmental changes in the region.  相似文献   

20.
Rice domestication and climatic change: phytolith evidence from East China   总被引:11,自引:0,他引:11  
Fossil rice phytoliths have been identified from a lateglacial to Holocene sequence of epicontinental sediments in the East China Sea that were probably transported by the Yangtze River from its middle and/or lower reaches. The rice phytoliths occurred first in the sequence at about 13900 cal. yr BP and disappeared during the period of 13000-10000 cal. yr BP, implying the earliest domesticated cereal crops of the world ever reported. Based on the records of phytoliths, pollen, diatoms and foraminifera from the sequence, the climate between 13000 and 10000 cal. yr BP was notably colder (Younger Dryas). The coincidence of disappearance of domesticated rice phytoliths with cold climate conditions may suggest a great climatic influence on human activities during that time. Warmer and wetter conditions during the period 13900 to 13000 cal. yr BP and after 10000 cal. yr BP have probably favoured rice domestication in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号