首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the results of spectroscopic observations of UUCas obtained with the highresolution (R = 15 000) fiber-fed echelle spectrometer of the 1.2-m telescope of Kourovka Astronomical Observatory of Ural Federal University. The radial velocities of the secondary, more massive and fainter component are measured for the first time. The component mass ratio is found to be q = M 1/M 2 = 0.54. The component masses, M 1 = 9.5M and M 2 = 17.7M , and the radius of the or bit, A = 52.7R , are computed for the published orbital inclination of i ~ 69°. Evidence is presented for a disk surrounding the more massive component and a common expanding envelope.  相似文献   

2.
V.S. Safronov  E.L. Ruskol 《Icarus》1982,49(2):284-296
A two-stage growth of the giant planets, Jupiter and Saturn, is considered, which is different from the model of contraction of large gaseous protoplanets. In the first stage, within a time of ~3 × 107 years in Jupiter's zone and ~2 × 108 years in Saturn's zone, a nucleus forms from condensed (solid) material having the mass, ~1028 g, necessary for the beginning of acceleration. The second stage may gravitating body, and a relatively slow accretion begins until the mass of the planet reaches ~10 m. Then a rapid accretion begins with the critical radius less than the radius of the Hill lobe, so that the classical formulae for the rate of accretion may be applied. At a mass m > m1 ≈ 50 m accretion proceeds slower than it would according to these formulae. When the planet sweeps out all the gas from its nearest zone of feeding (m = m2 ≈ 130 m), the width of the exhausted zone being built13 of the whole zone of the planet) growth is provided the slow diffusion of gas from the rest of the zone (time scale increases to 105?106 years and more). The process is terminated by the dissipation of the remnants of gas. In Saturn's zone m1 > m2 ≈ 30 m. The initial mass of the gas in Jupiter's zone is estimated. Before the beginning of the rapid accretion about 90% of the gas should have been lost from the solar system, and in the planet's zone less than two Jupiter masses remain. The highest temperature of Jupiter's surface, ≈5000°K, is reached at the stage of rapid accretion, m < 100 m, when the luminosity of the planet reaches 3 × 10?3 L. This favors an effective heating of the inner parts of the accretionary disk and the dissipation of gas from the disk. The accretion of Saturn produced a temperature rise up to 2000?2400° K (at m ≈ 20?25 m) and a luminosity up to 10?4 L.  相似文献   

3.
We have carried out a high-sensitivity search for circumstellar disks around Herbig Be stars in the continuum at 1.3 mm and 2.7 mm using the IRAM interferometer at the Plateau de Bure (PdBI). We report data on three Herbig Be stars MWC1080, MWC137 and R Mon. We have observed two of them, MWC137 and R Mon, in the continuum at 0.7 cm and 1.3 cm using the NRAO Very Large Array (VLA). This allows us to build the complete SED at mm and cm wavelengths and fit a simple disk model. We report the detection of circumstellar disks around MWC1080 with M d = 0.003M and R Mon with M d = 0.01M . A significant upper limit to the mass of the circumstellar disk around MWC137 has been obtained. Our results show that the ratio M d/M * is at least an order of magnitude lower in Herbig Be stars than in Herbig Ae and T Tauri stars.  相似文献   

4.
Results of photometric and spectroscopic studies for the new eclipsing cataclysmic variable star HBHA 4705-03 with an orbital period of 0.1718 days are presented. Its spectrum exhibits hydrogen and helium emission lines. The Doppler maps constructed from hydrogen lines and the He II λ 4686 line show that the regions near the inner Lagrangian point are the main source of emission in these lines, while the maps constructed from He I lines suggest the presence of an accretion disk around the primary. The masses of the components (M WD = 0.54 ± 0.10M andM RD = 0.45 ± 0.05 M ) and the orbital inclination of the system (i = 71.8° ± 0.7°) have been determined from observational data using well-known relations for close binaries and cataclysmic variable stars.  相似文献   

5.
The 1978 photoeletric observations of the late type close binary RZ Dra were reanalyzed with the Wilson and Devinney approach. Photometric parameters were determined (in Tab. 1.). The system is found to be semi-detached where the less massive component fills its Roche surface, whereas the other component almost does so. The configuration of the system is shown in Fig. 1. The absolute dimensions of the system are found to be M1 = 0.61M⊙, M2 = 0.41MR1 = 1.15R,?andR2 = 0.96R. Both components appear to be overluminous and oversized for their masses and spectral types. Its evolutionary stage is also discussed. The variability in the brightness of the primary mlnimum(Fig. 4) indicates mass loss from the vicinity of L2, which would be mainly responsible for the long-term decrease in its period.  相似文献   

6.
In this paper, we report a rare reflection effect eclipsing sdB+dM binary, 2M?1533+3759. It is the seventh eclipsing sdB+dM binary that has been discovered to date. This system has an orbital period of 0.16177042 day and a velocity semi-amplitude of 71.1 km?s?1. Using a grid of zero-metallicity NLTE model atmospheres, we derived T eff=29250 K, log?g=5.58 and [He/H]=?2.37 from spectra taken near the reflection effection minimum. Lightcurve modeling resulted in a system mass ratio of 0.301 and an orbital inclination angle of 86.6°. The derived primary mass for 2M?1533+3759, 0.376±0.055 M , is significantly lower than the canonical mass (0.48 M ) found for most previously investigated sdB stars. This implies an initial progenitor mass >1.8 M , at least a main sequence A star and perhaps even one massive enough to undergo non-degenerate helium ignition.  相似文献   

7.
We present new photometric observations covering eight minima times for the eclipsing binary GSC 1042-2191. The light curves in BVRI colors were analyzed by using WD-code for the system parameters. Eight minima times were obtained from the new observations. The system is found a low mass ratio (q = 0.148), A-type over-contact binary with a fill out parameter of f = 65.01 ± 12.18%. The preliminary absolute dimensions (M1= 1.26 ± 0.06 M, M2 = 0.18 ± 0.06 M, R1 = 1.54 ± 0.20 R, R2 = 0.69 ± 0.01 R, L1 =3.30 ± 0.30 L and L2 = 0.59 ± 0.20 L) indicate the very much oversized and over-luminous secondary component, by assuming the present luminosity of the secondary is its main sequence luminosity, we predict the original mass is about 0.8 M, this means the present secondary could be transferred and/or lost 77% of its original mass and only its core is left.  相似文献   

8.
This paper presents disk models for cataclysmic variables in which convection in the central layers has been included. The calculation of the vertical structure at different points is presented. The models have a central mass of 1M and matter fluxes of 10?9, 10?8, and 10?7 M yr?1. The corresponding luminosities are 1.86, 1.86×10 and 1.86×102 L .  相似文献   

9.
Over four hundred photoelectric observations of U Peg in B and V were secured with a 0.6M reflector at Beijing Observatory in 1978. Four times of minima were determined. A period study of the times of minima from 1896 to 1980 was performed. The system was found to have a secular period decrease, Δp/p of ?1.32 ¢ 10?1 or ?4.16 × 10?3 sec/yr, as well as a short term (17 years) sinusoidal oscillation with a semi-amplitude of 0.00323 day. It is suggested that oscillating term is caused by the light-time effect of an unseen third body. The third body may be a M6 main sequence star with a mass of 0.16 M. The longterm secular change in period may be associated with slow mass transfer.The analysis of the 1978 light curves together with the 1958 light curves of Binnendijk suggest that the system U Peg has an overcontact configuration of about 9%. It has the characteristics of a W-type W UMa system. The photometric mass ratio, m2m1, is between 3 and 2.5. If we correct the Struve et al. γ-velocity from 0 km/sec to about ?40 km/sec the estimated spectroscopic mass ratio would agree with the photoelectric value. Based on the above assumption the absolute dimensions of U Peg are of 0.6 and 1.8 M and of 0.8 and 1.4 R, for components 1 and 2 respectively. The physical dimensions indicate that the components are main sequence stars.  相似文献   

10.
In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics.
  1. The formation and the evolution of very massive stars (with masses >120 M) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collisions of the 10–20 most massive stars in the cluster (this process is known as ‘runaway merging’). The further evolution is governed by stellar wind mass loss during core hydrogen and core helium burning (the WR phase of very massive stars). Our simulations reveal that, as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed, but with a maximum mass ≈70 M. In low-metallicity clusters, however, it cannot be excluded that the runaway-merging process is responsible for pair-instability supernovae or for the formation of intermediate-mass black holes with a mass of several 100 M.
  2. Massive runaways can be formed via the supernova explosion of one of the components in a binary system (the Blaauw scenario), or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g. ζ Pup, λ Cep, BD+43°3654) are the product of the collision and merger of two or three massive stars.
  相似文献   

11.
Values of plasma temperature and vertical temperature gradient were obtained by fitting theoretical models to 60,000 observed electron density profiles, at heights of 400–1000 km. Results show the diurnal and seasonal changes in temperature from 75°S to 85°N near solar minimum. At night the temperature and temperature gradient are both low inside the plasmapause and high outside. Day-time temperatures increase almost linearly with latitude, from 1500 K at the magnetic equator to a maximum of 3500 K at the plasmapause. There is also a sharp peak at 77° latitude, beneath the magnetospheric cleft. Mean vertical temperature gradients are ca. 0.5 Kkm at night, and 1–4 K/km during the day. The downwards flow of heat, during the day, increases from about zero at 10° latitude to a maximum of 4 × 109eVcm2sec at the plasmapause. Night-time flows are 5–20 times less, inside the plasmasphere. Increases in magnetic activity cause a temperature increase at 400 km, of about 70 K per unit increase in Kp at all latitudes greater than 65°. The temperature peaks at the plasmapause and the magnetospheric cleft show little increase with magnetic activity, but move equatorwards by ca. 2° in latitude per unit Kp.  相似文献   

12.
In March 1979, the spectrum of Venus was recorded in the far infrared from the G.P. Kuiper Airborne Observatory when the planet subtended a phase angle of 62°. The brightness temperature was observed to be 275°K near 110 cm?1, dropping to 230°K near 270 cm?1. Radiance calculations, using temperature and cloud structure formation from the Pioneer Venus mission and including gaseous absorption by the collision-induced dipole of CO2, yield results consistently brighter than the observations. Supplementing the spectral data, Pioneer Venus OIR data at similar phase angles provide the constraint that any additional infrared opacity must be contained in the upper cloud, H2SO4 to the Pioneer-measured upper cloud structure serves to reconcile the model spectrum and the observations, but cloud microphysics strongly indicates that such a high particle density haze (N ? 1.6 × 107cm?3) is implausible. The atmospheric environment is reviewed with regard to the far infrared opacity and possible particle distribution modifications are discussed. We conclude that the most likely possibility for supplementing the far-infrared opacity is a population of large particles (r ? 1 μm) in the upper cloud with number densities less than 1 particle cm?3 which has remained undetected by in situ measurements.  相似文献   

13.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

14.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   

15.
《New Astronomy》2007,12(2):95-103
Low metallicity very massive stars with an initial mass between 140M and 260M can be subdivided into two groups: those between 140M and 200M which produce a relatively small amount of Fe, and those with a mass between 200M and 260M where the Fe-yield ejected during the supernova explosion is enormous. We first demonstrate that the inclusion of the second group into a chemical evolutionary model for the Solar Neighbourhood predicts an early temporal evolution of Fe, which is at variance with observations whereas it cannot be excluded that the first group could have been present. We then show that a low metallicity binary with very massive components (with a mass corresponding to the first group) can be an efficient site of primary 14N production through the explosion of a binary component that has been polluted by the pair instability supernova ejecta of its companion. When we implement these massive binary 14N yields in a chemical evolution model, we conclude that very massive close binaries may be important sites of 14N enrichment during the early evolution of the Galaxy.  相似文献   

16.
17.
In a disk with a low optical depth, dust particles drift radially inward by the Poynting-Robertson (P-R) drag rather than are blown out by stellar radiation pressure following destructive collisions. We investigate the radial distribution of icy dust composed of pure ice and refractory materials in dust-debris disks taking into account the P-R drag and ice sublimation. We find that icy dust particles form a dust ring by their pile-ups at the edge of their sublimation zone, where they sublime substantially at the temperature 100-110 K. The distance of the dust ring is 20-35 AU from the central star with its luminosity L??30L and 65(L?/100L)1/2 AU for L??30L, where L is the solar luminosity. The effective optical depth is enhanced by a factor of 2 for L??100L and more than 10 for L??100L. The optical depth of the outer icy dust disk exceeds that of the inner disk filled with refractory particles, namely, the residue of ice sublimation, which are further subjected to the P-R effect. As a result, an inner hole is formed inside the sublimation zone together with a dust ring along the outer edge of the hole.  相似文献   

18.
In many different galactic environments the cluster initial mass function (CIMF) is well described by a power law with index ?2. This implies a linear relation between the mass of the most massive cluster (M max?) and the number of clusters. Assuming a constant cluster formation rate and no disruption of the most massive clusters it also means that M max? increases linearly with age when determining M max? in logarithmic age bins. We observe this increase in five out of the seven galaxies in our sample, suggesting that M max? is determined by the size of the sample. It also means that massive clusters are very stable against disruption, in disagreement with the mass-independent disruption (MID) model. For the clusters in M51 and the Antennae galaxies, the size-of-sample prediction breaks down around 106 M, suggesting that this is a physical upper limit to the masses of star clusters in these galaxies. In this method there is a degeneracy between MID and a CIMF truncation. We show how the cluster luminosity function can serve as a tool to distinguish between the two.  相似文献   

19.
We present the results of our hydrodynamic calculations of radial pulsations in helium stars with masses 1 MM ≤ 10 M, luminosity-to-mass ratios 1 × 103L/ML/M ≤ 2 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y=0.98 and heavy elements Z=0.02. We show that the lower boundary of the pulsation-instability region corresponds to L/M ~ 103L/M and that the instability region for L/M ? 5 × 103L/M is bounded by effective temperatures Teff ? 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part of the Hertzsprung-Russell diagram and radial pulsations can arise in stars with effective temperatures Teff ? 105 K at L/M ? 7 × 103L/M. The velocity amplitude for the outer boundary of the hydrodynamic model increases with L/M and lies within the range 200 ? ΔU ? 700 km s?1 for the models under consideration. The periodic shock waves that accompany radial pulsations cause a significant change of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass ratio L/M ~ 3 × 104L/M.  相似文献   

20.
We suggest that planets, brown dwarfs, and even low mass stars can be formed by fragmentation of protoplanetary disks around very massive stars (M ? 100 M). We discuss how fragmentation conditions make the formation of very massive planetary systems around very massive stars favorable. Such planetary systems are likely to be composed of brown dwarfs and low mass stars of ~0.1–0.3 M, at orbital separations of ~ few × 100–104 AU. In particular, scaling from solar-like stars suggests that hundreds of Mercury-like planets might orbit very massive stars at ~103 AU where conditions might favor liquid water. Such fragmentation objects can be excellent targets for the James Webb Space Telescope and other large telescopes working in the IR bands. We predict that deep observations of very massive stars would reveal these fragmentation objects, orbiting in the same orbital plane in cases where there are more than one object.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号