首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Arc volcanic activity on opposite sides of the Pacific Ocean (Japan and Central America) has been investigated by examining the number of volcanic ash layers recorded in Neogene and Quaternary deep-sea sediments. The data suggest that ash layers counted in deep-sea sediments may provide a reliable record of arc volcanism. The study is based on a quantitative analysis of arc volcanic activity using cores collected on DSDP (Deep-Sea Drilling Project) and ODP (Ocean Drilling Program) legs. Five distinct parameters which might affect ash distribution in marine sediments were reviewed: nature of the eruption, wind influence, settling conditions, diagenesis, and plate motion. Of these five, past atmospheric circulation was the most significant. The main constraint on the analysis is that temporal scattering of ash is not directly related to wind pattern variations. Results of this analysis are correlated with dating of terrestrial volcanic sequences. Although marine tephra records for individual regions reveal minor differences in the episodes of volcanic activity, a general correlation exists between activity of arc volcanism in Japan and in Central America. Two important pulses of arc volcanism occurred during Middle Miocene times (18–13 Ma) and Plio-Quaternary times (5–0 Ma). These episodes of intense volcanism are separated by a well recorded quiescent period during Late Miocene times. These correlating episodes of the volcanic record indicate a direct link between arc volcanism and the global tectonic evolution of the Pacific ocean margins.  相似文献   

2.
The tempo of Cenozoic volcanism on opposite sides of the Pacific Ocean has been examined by compiling the numbers of radiometric dates reported for terrestrial volcanic sequences and the numbers of volcanic ash (glass) horizons recorded in Neogene deep-sea (DSDP) sedimentary sections. Within certain limits these data are believed to provide a reliable record of extrusive and explosive volcanism. Although terrestrial and marine records for individual regions reveal important differences in the episodicity of volcanism, a correlation is found between activity in the Southwestern Pacific, Central America and the Cascade Range of western North America. Two important pulses of Neogene volcanism (the Cascadian and Columbian episodes) occurred during the Quaternary (t = 2 m.y. to present) and within the Middle Miocene (t = 16 to 14 m.y. ago), with less important episodes in the latest Miocene to Early Pliocene (t = 6 to 3 m.y. ago) and Late Miocene (11 to 8 m.y. ago). The names Fijian and Andean are proposed to these episodes. Dating of terrestrial sequences indicates that these episodes of intense volcanism took place in relatively short intervals of time, separated by longer more quiescent periods.It has been suggested that synchronous episodic volcanism is related to changes in rates of sea-floor spreading and subduction. If so, volcanism must amplify these changes, because the variations in tempo of volcanism are much too great for proportional rate changes. An apparent correlation of volcanism in orogenic zones of the circum-Pacific region with world-wide changes of sea level and changes of activity in the Hawaiian-Emperor chain suggests that volcanism records fundamental tectonic changes throughout the entire Pacific region.  相似文献   

3.
The island chains of French Polynesia form subparallel line segments whose southeasterly extensions are perpendicular to the East Pacific Rise, the site of present sea-floor spreading in the eastern Pacific Ocean. Samples collected from island members of the Society and Austral Islands chains are used, together with previously reported age determinations for the Marquesas and Pitcairn-Gambier Islands, in a geochronological study of the southeastward migration of volcanism in each of those four lineaments. The suggestion from geomorphologic evidence that island ages increase to the northwest within each island chain, is confirmed by K---Ar whole-rock ages. The linear volcanism which built the islands of French Polynesia began in the Miocene and continues today.Rates of migration of volcanism are calculated from the nearly linear relationship between average island ages and distance from the southeast ends of the four island lineaments. The four rates are indistinguishable, within limits of detection, at 11 ± 1 cm/year. These rates are consistent with the model of rigid Pacific plate movement over four fixed sources of volcanism, be they dynamic as in the hot spot/plume models or passive as in models of propagating lithospheric fractures. If it is accepted that these volcanic sources trace the motion of the lithosphere over the mantle and thus define the “absolute” frame of reference for plate movement, Pacific plate motion may be fixed to the geometry and volcanic migration rates of French Polynesia. This allows calculation of the absolute motion of all other plates, providing an accurate relative motion model is known (Minster et al., 1974). Such a calculation predicts that Africa is virtually stationary and that the Mid-Atlantic Ridge and East Pacific Rise are moving slowly to the west.  相似文献   

4.
Samples from five islands of the Marquesas Island chain (southeast Pacific Ocean) have been dated by the K-Ar method and exhibit a northwest to southeast volcanic migration rate of 9.9 cm/yr. This movement is in the same direction but of intermediate magnitude to results from the Austral Island chain (lower rate) and the Hawaiian Island chain (considerably higher rate). The rate of migration of volcanism in the Marquesas Islands is consistent with the model of rigid Pacific plate movement over a fixed “hot spot” or mantle “plume” provided that the pole of rotation for the Pacific plate for the last 5 my is located near 55°S, 170°E.  相似文献   

5.
The opening of the Arctic Ocean during the past 55 Ma resulted in relative rotation of America with respect to Eurasia about a pole located in eastern Siberia, near the plate boundary. The extensional plate boundary enters deep inside the Eurasian continent up to the rotation pole. On the opposite side of the pole, on the Pacific side of the plate boundary, compressive tectonics are recorded along Sakhalin and Hokkaido. From the Oligocene to Middle Miocene, the relative movement was accommodated by strike-slip motion along Sakhalin and Hokkaido although the rotation pole was not located at a significatively different position from now. In this paper we explain this by independent motion of the southernmost tip of the American plate towards the Pacific margin which behaves as a free boundary. This oceanward motion resulted in an extension of the American plate giving rise to the wedge structure of the Okhotsk Sea. The Japan Sea opened as a pull-apart basin along the strike-slip boundary; finally the increasing extension in the Okhotsk Sea led to the opening of the oceanic Kuril Basin.  相似文献   

6.
Sea-floor spreading rates from four locations along the Nazca-Pacific plate boundary and one along the Juan de Fuca-Pacific plate boundary show variations over the past 2.4 m.y., with decreasing rates prior to the Jaramillo to Olduvai time interval (0.92–1.73 m.y. ago) and increasing rates since then. Other Pacific area volcanic phenomena in mid-plate and convergent-boundary settings also show minima about 1.3–1.5 m.y. ago and a maximum at present and another maximum about 5 m.y. ago: extrusion rates along the Hawaiian Ridge; volcanic episodes associated with calc-alkalic provinces of western Oregon and Central America; temporal variations in the SiO2 content of Aleutian ash layers; and the number of deep-sea ash layers. These phenomena may fluctuate in response to changing spreading rates. During times of more rapid spreading increased shear and melting along lithospheric boundaries may occasion increased volcanic activity, whereas during times of less rapid spreading volcanic activity may be less intense.  相似文献   

7.
A compilation of 417 isotopic dates on mid and late Cenozoic igneous rocks from the southwestern United States shows that volcanism migrated northward with time. The principal locus of volcanism at any given time was an east-west band that corresponded closely with the calculated position of the subducted Mendocino fracture zone (MFZ) under the North American plate. This correspondence supports the theory that volcanism was triggered by subduction of the MFZ, which was a major (1 km) north-facing topographic step in the Farallon plate. Both volcanism and the MFZ moved northward at about 3.1 cm/year. Andesites and rhyolites show close correspondence to MFZ passage, but many basalts were erupted significantly later. Cooling dates on basement rocks in southern Arizona cluster at the time the MFZ passed under that area.

Earlier models proposing rapid late Tertiary steepening of the subducted Farallon plate were based on a westward sweep of volcanism. Our compilation shows no evidence for such a westward sweep.  相似文献   


8.
New multi-beam bathymetric data from the Philippine Sea and northwest Pacific Basin reveal linear chains of small (less than 40 km3) domed-shaped volcanoes (Philippine) and coned-shaped volcanoes (Pacific) rising 100–1000 m above the 6 km deep ocean floor. Some appear to have well-developed collapsed calderas and spines. Their morphology suggest recent formation in supposedly stable mid-plate regions and their occurrence in linear chains approximately parallel to plate motion may suggest an origin by extrusion from “mini-hot spot” plumes.  相似文献   

9.
In the paleogeographic reconstruction of Mexico and northern Central America, an ever-increasing amount of evidence shows that the entire region is a collage of suspect terranes transported from abroad, whose timing and sense of motion are now beginning to be understood. Among these, the Chortis block (nuclear Central America) and the Baja California Peninsula have been proposed as pieces of continent separated from the Pacific coast of southwestern Mexico, that have moved either southeastward by the Farallon plate or northwestward by the Kula plate. Previous studies mainly confined to the northern margin of the Chortis block, confirmed a left-lateral displacement of 130 km in Neogene time. Further studies made northwestward along the Mexican coast provided a better understanding of magmatic and metamorphic processes in the area, and suggested times of detachment increased to 30 Ma, 40 Ma, and 66 Ma. The pre-detachment westernmost position of the block has changed, depending on the model chosen, from Puerto Vallarta and beyond, to the current position. Here we show that the isotopic mineral ages from coastal granites along the coast from Puerto Vallarta, Jalisco (80 Ma) to Puerto Angel, Oaxaca (11 Ma) record systematic decrease of cooling ages from NW to SE. This pattern is interpreted to result from the progressive uplift of rocks exposed at the present-day coast in that direction, such uplift occurred in response to the development of the Middle America Trench at the newly formed continental margin when the Chortis block was sliding at an average rate of 1.5 cm/year in a sinistral sense to its present position. Our results also constrain the position of the Kula-Farallon spreading axis north of Puerto Vallarta. These observations led us to conclude that several indicators point to this time and region for the onset of strike-slip drifting of the Chortis block toward its current position. Here, we also present several view points in terms of other possilble interpretations to different tectonic, geologic and isotopic data sets published recently by different authors.  相似文献   

10.
Bathymetric and magnetic data are used to obtain estimates, on the Pacific and Nazca plates, of the boundaries separating lithosphere generated at the old Farallon Ridge from the more recent one created at the present-day East Pacific Rise. An excellent correlation is found with the sites of known teleseismically recorded intraplate seismicity, suggesting that these boundaries, which are lines of age discontinuity in the plate, must be zones of weakness of the lithospheric plate. In particular, the so-called Region C, identified by Okal et al. as a major site of seismic release, sits on a small piece of Farallon plate, in the immediate vicinity of the northern extension of the fossil Roggeveen Rise, cut across by the East Pacific Rise during the ridge jump.  相似文献   

11.
Fifteen submarine glasses from the East Pacific Rise (CYAMEX), the Kyushu-Palau Ridge (DSDP Leg 59) and the Nauru Basin (DSDP Leg 61) were analysed for noble gas contents and isotopic ratios. Both the East Pacific Rise and Kyushu-Palau Ridge samples showed Ne excess relative to Ar and a monotonic decrease from Xe to Ar when compared with air noble gas abundance. This characteristic noble gas abundance pattern (type 2, classified by Ozima and Alexander) is interpreted to be due to a two-stage degassing from a noble gas reservoir with originally atmospheric abundance. In the Kyushu-Palau Ridge sample, noble gases are nearly ten times more abundant than in the East Pacific Rise samples. This may be attributed to an oceanic crust contamination in the former mantle source.There is no correlation between the He content and that of the other noble gas in the CYAMEX samples. This suggests that He was derived from a larger region, independent from the other noble gases.Except where radiogenic isotopes are involved, all other noble gas isotopic ratios were indistinguishable from air noble gas isotopic ratios. The3He/4He in the East Pacific Rise shows a remarkably uniform ratio of (1.21±0.07)×10?5, while the40Ar/36Ar ranges from 700 to 5600.  相似文献   

12.
Previously unreported depth anomalies in the central and eastern Pacific are described. Some of these depth anomalies exist over hot spots and propagating spreading ridges; they are not limited to the area of active volcanism but extend beyond it, into the areas toward which the volcanism is propagating. These areas may be “precursor” topographic features, showing up areas of impending or potential mid-plate volcanism or spreading. A distinction can be made between active depth anomalies and fossil ones. Gravity anomalies and high heat flow values can be correlated with active depth anomalies in one area, supporting the arguments favoring a thinning of the lithosphere as their underlying cause.  相似文献   

13.
We propose that the Pacific-Kula ridge began spreading approximately 85 m.y. B.P., during Late Cretaceous time. Extrapolation of the Great Magnetic Bight backwards in time results in an implausible ridge configuration. This implies that plate velocity vectors for the Pacific, Kula, and Farallon plates were not constant during this interval. Evidence for splitting of the Kula plate from the Pacific plate along the Chinook trough is the relationship between the north-striking Amlia and Adak fracture zones, the Chinook and Emperor troughs, and the magnetic lineations south of the Aleutian trench. If this hypothesis is correct, it will require that Mesozoic reconstructions of the Pacific basin and their relation to Cenozoic reconstructions be re-examined. A previously unrecognized Mesozoic plate may be required. We propose calling this the Izanagi plate.  相似文献   

14.
We made a summary of the materials from DSDP and ODP initial reports on deep-sea drilling and other data on areal and stratigraphic distributions and compositions of pyroclastic material in the sediments of the Antarctic Atlantic. These data were used to study the geological history of the region, which was formed approximately 165 Ma ago as Gondwana broke up as part of the Southern Ocean, being accompanied by explosive volcanism of various types (volcano-fissure volcanism, riftogenic, plume-induced, that of “hot spots,” and the island arc type).  相似文献   

15.
日本本州及其邻近区域的应力状态以及弧后盆地的演化机制一直是人们所关注的问题.本文对2011年3月11日东日本大地震地震序列(2011年3月11日至2012年3月15日)的哈佛双力偶解进行了聚类分析,得到五种类型的震源机制解:与主震类型一致的低倾角逆断层型地震;主张应力方向垂直于日本海沟走向的正断层型地震;主张应力方向平行于日本海沟走向的正断层型地震;主压应力方向平行于日本海沟走向的逆断层型地震;包括走滑型地震在内的其他类型地震.东日本大地震地震序列中发生在弧前增生楔地震的震源机制解与大地震发生之前地震的震源机制解特征有显著区别,反映出该地区的应力状态与震前相比有较大改变.东日本大地震及其前震释放了附近区域的累积弹性应力,主震破裂区附近太平洋板块和其上覆板块接近完全解耦,降低了日本海盆地、中国东北地区的近东西向挤压应力水平.不过,整个本州岛东部区域太平洋板块和其上覆板块并没有完全解耦,但应力水平并不高.我们认为,日本海及中国东北应力水平的降低会使该区域的近东西向挤压型地震的危险性降低,而使NNE-SSW走向的走滑型地震活动性增强.同时,火山活动性也会增强.尤其是本州岛地区,存在近期火山爆发的可能性.东日本大地震地震序列的震源机制解特征还提示我们,日本海的应力状态及日本海的演化可能在一定程度上取决于太平洋板块和上覆板块的耦合状态.持续的弱耦合将不仅使得弧后大范围的地区保持岩浆上涌所必须的拉伸应力环境,而且还会因弧前隆起区发育大量正断层型地震而向深部提供促使岩浆生成所必须的水,因而造成日本海的再次扩张.  相似文献   

16.
A mosaic of large lithospheric plates rims the Arctic Ocean Basin, and foldbelts between these plates contain numerous allochthonous microplates. A new model for continental drift and microplate accretion proposes that prior to the late Mesozoic the Kula plate extended from the Pacific into the Arctic. By a process of circumpolar drift and microplate accretion, fragments of the Pacific basin, including parts of the Kula plate, were cut off and isolated in the Arctic Ocean, the Yukon-Koyukuk basin in Alaska, and the Bering Sea.  相似文献   

17.
Seamount magnetic anomaly inversions as well as DSDP paleomagnetic and equatorial sediment facies data constrain a paleomagnetic pole for the Pacific plate of Late Eocene age. The location of the pole at 77.5°N, 21.2°E implies 12.5 ± 1.6° of apparent polar wander for the Pacific plate during the last 41 ± 5 m.y. The Late Eocene pole is significantly different from the Pacific Maastrichtian pole at the 95% confidence level and indicates 7.2° of apparent polar motion of the Pacific between 69 and 41 m.y. B.P. The data source locations for the Late Eocene pole are scattered over a large area of the North Pacific and thus the consistency of the data supports the hypothesis that the north central Pacific plate has been rigid since the Eocene. The agreement of the Late Eocene pole with the motion predicted for the Pacific from hotspot models suggests that relative motion between the spin axis and hotspots has been small since that time. Additionally, this finding dictates that the significant amounts of hotspot versus spin axis motion inferred by other authors to have occurred since the Cretaceous must have instead occurred at a faster rate and concluded before the Eocene.  相似文献   

18.
Between 67 and ~40 Ma ago a northwest-southeast-trending fracture system over 8000 km long split the Pacific plate and accumulated at least 1700 km of dextral offset between the east and west portions. This system, here named the Emperor fracture zone (EFZ) system, consisted of several segments, one along the present trace of the Emperor trough and another along the Line Islands, joined by short spreading ridges. The EFZ terminated at its northern end against the Kula-Pacific ridge, and at its southern end in a ridge-transform system, called the Emperor spreading system, which extended to the west, north of Australia.The finite angular velocity vector describing the relative motion between the East and West Pacific plates is ~0.6°/Ma about a pole at 36°N, 70°W. This vector, added to the known Early Tertiary motion of the Pacific plate with respect to the global hotspot reference frame, accounts in large part for the NNW trend of the Emperor seamount chain relative to the WNW Hawaiian trend, without violation of the integrity of the Antarctic plate. The Meiji-Emperor and Emperor-Hawaiian bends date, respectively, the initiation (~67 Ma ago) and cessation (~40 Ma ago) of seafloor spreading on the Emperor spreading system.The postulated Early Tertiary relative motion along the EFZ between the East and West Pacific plates explains (1) the present misalignment of the two sets of magnetic bights of the Pacific, (2) the abrupt truncation of eastern Pacific bathymetric lineaments against the Emperor trough and Line Islands, (3) the contrast in paleolatitude between the eastern and western Pacific as indicated by paleomagnetic and sedimentologic studies, and (4) the anomalous gravity signature of the central Hawaiian ridge that indicates that the ridge loaded thin hot lithosphere.  相似文献   

19.
Summary of taxa and distribution of Sirenia in the North Pacific Ocean   总被引:1,自引:0,他引:1  
Abstract North Pacific fossil sirenians comprise representatives of three subfamilies of the Dugongidae: Halitheriinae ( Metaxytherium arctodites , Middle Miocene, North America), Hy-drodamalinae ( Dusisiren spp., Early-Late Miocene, and Hydrodamalis spp., Late Miocene-Pleistocene, North America and Japan), and Dugonginae ( Dioplotherium allisoni , Early-Middle Miocene, North America). Indeterminate dugongid remains are also known from the Late Oligocene of Japan, and the discovery of additional taxa in the western Pacific, especially in Paleogene rocks, can be anticipated. The known North Pacific Neogene taxa apparently dispersed into the Pacific from the Caribbean. Metaxytherium gave rise in the Pacific to Dusisiren ; a series of chronospecies of the latter genus eventually culminated in Hydrodamalis , which was exterminated by humans circa AD 1768. Dioplotherium left no known descendants in the Pacific. The Recent Dugong probably entered the Pacific from the Indian Ocean. The presence in the North Pacific Miocene of at least three sympatric dugongid lineages, together with desmostylians, is evidence for a diversity of marine plants that was reduced by subsequent climatic cooling.  相似文献   

20.
The South Central Pacific is the location of an abnormal concentration of intraplate volcanism. Noting that this volcanism is present from the Kermadec Tonga trench to the Easter microplate and forms a wide east–west channel, we propose to explain its occurrence in relation to the Pacific plate geometry and kinematics. We construct 2D numerical models of stress and strain within the Pacific plate using its velocity field and boundary conditions. The models indicate a shear band, associated to a change from compressional stresses to the south to tensional stresses to the north, which develop after 10 Myr between the Australian plate corner and the Easter microplate. We propose that the Central Pacific intraplate volcanism is related to this process, and may represent the first step of a future plate re-organization which will eventually break the Pacific plate in a southern and a northern plate due to intraplate stresses. Present-day intraplate volcanism would define break up spots of the future border.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号