首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
震动图快速生成系统研究   总被引:8,自引:2,他引:6       下载免费PDF全文
震动图(ShakeMap)是描绘地震发生之后地震动分布情况的一种工具,它显示的是地震产生的地面运动和可能的烈度破坏情况.本文的研究重点是如何实现用计算机自动绘制震动图,主要选择了峰值地面加速度等值图、仪器烈度分布图为研究对象.并对如何确定强震动质心、如何在台站稀疏地区估计地面运动加速度值、如何进行场地校正、如何将PGA/PGV转换为仪器烈度值做了深入的研究.  相似文献   

2.
The ShakeMap software automatically generates maps of the peak ground motion parameters (shakemaps) and of instrumental intensity soon after an earthquake. Recorded data are fundamental to obtaining accurate results. In case observations are not available, ShakeMap relies on ground motion predictive equations, but due to unmodelled site conditions or finite fault effects, large uncertainties may appear, mainly in the near-source area where damage is relevant. In this paper, we aim to account for source effects in ShakeMap by computing synthetics to be used for integrating observations and ground motion predictive equations when near-source data are not available. To be effective, the computation of synthetics, as well as of the finite fault, should be done in near real time. Therefore, we computed rapid synthetic seismograms, by a stochastic approach, including the main fault features that were obtained through inversion of regional and teleseismic data. The rapidity of calculation is linked to a number of assumptions, and simplifications that need testing before the procedure can run in automatic mode. To assess the performance of our procedure, we performed a retrospective validation analysis considered as case study of the M w = 6.3 earthquake, which occurred in central Italy on April 6, 2009. In that case, the first shakemaps, generated a few minutes after the earthquake, suffered large uncertainties on ground motion estimates in an area closer to the epicenter due to the lack of near-field data. To verify our approach, we recomputed shakemaps for the L’Aquila earthquake, integrating data available soon after the earthquake at different elapse times with synthetics, and we compared our shaking map with the final shakemap, obtained when all the data were available. Our analysis evidences that (1) when near-source data are missing, the integration of real data with synthetics reduces discrepancies between computed and actual ground shaking maps, mainly in the near-field zone where the damage is relevant and (2) the approach that we adopted is promising in trying to reduce such discrepancies and could be easily implemented in ShakeMap, but some a priori calibration is necessary before running in an automatic mode.  相似文献   

3.
The use of shake maps in terms of macroseismic intensity in earthquake early warning systems as well as intensity based seismic hazard assessments provides a valuable supplement to typical studies based on recorded ground motion parameters. A requirement for such applications is ground motion prediction equations (GMPE) in terms of macroseismic intensity, which have the advantages of good data availability and the direct relation of intensity to earthquake damage. In the current study, we derive intensity prediction equations for the Vrancea region in Romania, which is characterized by the frequent occurrence of large intermediate depth earthquakes giving rise to a peculiar anisotropic ground shaking distribution. The GMPE have a physical basis and take the anisotropic intensity distribution into account through an empirical regional correction function. Furthermore, the relations are easy to implement for the user. Relations are derived in terms of epicentral, rupture and Joyner–Boore distance and the obtained relations all provide a new intensity estimate with an uncertainty of ca. 0.6 intensity units.  相似文献   

4.
Empirical scaling equations are presented which relate the average number of water pipe breaks per km2, , with the peak strain in the soil or intensity of shaking at the site. These equations are based on contour maps of peak surface strain evaluated from strong motion recordings, and observations of intensity of ground shaking and damage following the Northridge, California, earthquake of 17 January 1994. Histograms for the number of pipe breaks per km2, n, are presented for several ranges of values of the horizontal peak strain and for several values of the site intensity. The observed distribution of pipe breaks is also used to speculate on possible more detailed geographical distribution of near surface strains in the San Fernando Valley and in central Los Angeles. The results can be used to predict number of pipe breaks in the San Fernando Valley and in Los Angeles, for a scenario earthquake or in probabilistic seismic hazard calculations, considering all possible scenarios that contribute to the hazard and the likelihood of their occurrence during specified exposure. Such predictions will be useful for emergency response planning (as the functioning of the water supply is critical for sanitation and in fighting fires caused by earthquakes), to estimate strains during future and past earthquakes in areas where no strong motion was recorded and in defining design guidelines for pipelines and other structures and structural systems sensitive to strains in the ground.  相似文献   

5.
Probabilistic seismic risk assessment for spatially distributed lifelines is less straightforward than for individual structures. While procedures such as the ‘PEER framework’ have been developed for risk assessment of individual structures, these are not easily applicable to distributed lifeline systems, due to difficulties in describing ground‐motion intensity (e.g. spectral acceleration) over a region (in contrast to ground‐motion intensity at a single site, which is easily quantified using Probabilistic Seismic Hazard Analysis), and since the link between the ground‐motion intensities and lifeline performance is usually not available in closed form. As a result, Monte Carlo simulation (MCS) and its variants are well suited for characterizing ground motions and computing resulting losses to lifelines. This paper proposes a simulation‐based framework for developing a small but stochastically representative catalog of earthquake ground‐motion intensity maps that can be used for lifeline risk assessment. In this framework, Importance Sampling is used to preferentially sample ‘important’ ground‐motion intensity maps, and K‐Means Clustering is used to identify and combine redundant maps in order to obtain a small catalog. The effects of sampling and clustering are accounted for through a weighting on each remaining map, so that the resulting catalog is still a probabilistically correct representation. The feasibility of the proposed simulation framework is illustrated by using it to assess the seismic risk of a simplified model of the San Francisco Bay Area transportation network. A catalog of just 150 intensity maps is generated to represent hazard at 1038 sites from 10 regional fault segments causing earthquakes with magnitudes between five and eight. The risk estimates obtained using these maps are consistent with those obtained using conventional MCS utilizing many orders of magnitudes more ground‐motion intensity maps. Therefore, the proposed technique can be used to drastically reduce the computational expense of a simulation‐based risk assessment, without compromising the accuracy of the risk estimates. This will facilitate computationally intensive risk analysis of systems such as transportation networks. Finally, the study shows that the uncertainties in the ground‐motion intensities and the spatial correlations between ground‐motion intensities at various sites must be modeled in order to obtain unbiased estimates of lifeline risk. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
介绍了ShakeMap烈度图在地震应急专题图制作的背景和意义,对ShakeMap系统进行了介绍,并利用ArcGIS软件将ShakeMap烈度数据进行矢量化,同时展示了地震余震记录数据的获取方法,并以2014年新疆于田7.3级地震余震分布图为例,将其应用在应急专题图件的编制中加以演示。结果表明,应用ShakeMap在专题图制作中能提升图件产出的质量,为辅助决策和震情跟踪给予有力的信息支持。  相似文献   

7.
The evaluation of the potential impact of strong seismic events shortly after their occurrence is a critical step to organise emergency response and consequently minimise the adverse effects of earthquakes. The estimation of the impact from earthquakes considering the observed ground shaking from past events can be useful for the calibration of existing exposure and/or fragility and vulnerability models. This study describes a methodology to combine the publicly available information from the USGS ShakeMap system and the open-source software OpenQuake engine for the assessment of damage and losses. This approach is employed to estimate the number of structural collapses considering the 2012 Magnitude 5.9 Emilia-Romagna (Italy) earthquake and the aggregated economic loss because of the 2010 Magnitude 7.1 Darfield (New Zealand) event. Several techniques to calculate the ground shaking in the affected region considering the spatial and interperiod correlations in the intra-event ground motion residuals are investigated and their influence in the resulting damage or loss estimates are evaluated.  相似文献   

8.
The occurrence of the Algiers earthquake (M 6.8) of May 21, 2003, has motivated the necessity to reassess the probabilistic seismic hazard of northern Algeria. The fact that this destructive earthquake took place in an area where there was no evidence of previous significant earthquakes, neither instrumental nor historical, strongly encourages us to review the seismic hazard map of this region. Recently, the probabilistic seismic hazard of northern Algeria was computed using the spatially smoothed seismicity methodology. The catalog used in the previous computation was updated for this review, and not only includes information until June 2003, but also considers a recent re-evaluation of several historical earthquakes. In this paper, the same methodology and seismicity models are utilized in an effort to compare this methodology against an improved and updated seismic catalog. The largest mean peak ground acceleration (PGA) values are obtained in northernmost Algeria, specifically in the central area of the Tell Atlas. These values are of the order of 0.48 g for a return period of 475 years. In the City of Algiers, the capital of Algeria, and approximately 50 km from the reported epicenter of this latest destructive earthquake, a new mean PGA value of 0.23 g is obtained for the same return period. This value is 0.07 g greater than that obtained in the previous computation. In general, we receive greater seismic hazard results in the surrounding area of Algiers, especially to the southwest. The main reason is not this recent earthquake by itself, but the significant increase in the mmax magnitude in the seismic source where the city and the epicenter are included.  相似文献   

9.
Seismotectonic zonation studies in the Tell Atlas of Algeria, a branch of the Africa-Eurasia plate boundary, provide a valuable input for deterministic seismic hazard calculations. We delineate a number of seismogenic zones from causal relationships established between geological structures and earthquakes and compile a working seismic catalogue mainly from readily available sources. To this catalogue, for a most rational and best-justified hazard analysis, we add estimates of earthquake size translated from active faulting characteristics. We assess the regional seismic hazard using a deterministic procedure based on the computation of complete synthetic seismograms (up to 1 Hz) by the modal summation technique. As a result, we generate seismic hazard maps of maximum velocity, maximum displacement, and design ground acceleration that blend information from geology, historical seismicity and observational seismology, leading to better estimates of the earthquake hazard throughout northern Algeria. Our analysis and the resulting maps illustrate how different the estimate of seismic hazard is based primarily on combined geologic and seismological data with respect to the one for which only information from earthquake catalogues has been used.  相似文献   

10.
It has taken more than a hundred years for seismic observations in the Philippines to evolve to a modern observation system.The responsibility of seismic observations was likewise transfeered from one agency to another during this same period of time.At present,the mandate of conducting seismic observatins in the Philippines rests with the Philippine Institute of Volcanology and Seismology(PHIVOLCS),In 2000,through a grant aid from the Japan International Cooperation Agency(JICA),the Philippine Seismic netowrk was upgraded to a digital system.As a result,a new set of seismic monitoring equipments was installed in all of the 34 PHIVOLCS seismic stations all over the country,Digital waveforms are now available for high level seismic data processing.and data acquisition and processing are now automated.Included in the upgrade is the provision of strong motion accelerographs in all stations whose data can now be used for studying ground motion and intensity attenuation relations,The new setup is now producing high-resolution data that can now be used for conducting basic seismological researches,Earthquake locations have now improved allowing for the modeling and delineation of earthquake source regions necessary for earthquake hazard studies.Current seismic hazard studies in the Philippines involve the estimation of ground motion using both probabilitstic and deterministic approaches,seismic microzonation studies of key cities using microtremor observations,paleoseismology and active faults mapping ,and identification of liquefaction-prone,landslide-prone nd tsunami-affected areas.The earthquake database is now being reviewed and completed with the addition of historical events and from data from regional databases,While studies of seismic hazards were primarily concentrated on a regional level ,PHIVOLCS is now focusing on doing these seismic hazard studies on a micriolevel.For Metro Manila,first generation hazard maps showing ground rupture,ground shaking and liquefaction hazards have recently been completed.Other large cities that are also at risk from large earthquakes are the next targets.The elements at risk such as population,lifelines,and vertical and horizontal structures for each of these urban centers are also being incorporated in the hazard maps for immediate use of planners,civil defense officials,policy-makers and engineers.The maps can also now be used to describe possible scenarios during times of strong events and how appropriate socio-economic and engineering responses could be designed.In addition,a rapid earthquake damage assessment system has been started which will attempt to produce immediate or rapid assessments identification of elements at risk durin times of strong earthquakes  相似文献   

11.
Accurate estimates of the ground motions that occurred during damaging earthquakes are a vital part of many aspects of earthquake engineering, such as the study of the size and cause of the uncertainties within earthquake risk assessments. This article compares a number of methods to estimate the ground shaking that occurred on Guadeloupe (French Antilles) during the 21st November 2004 (M w 6.3) Les Saintes earthquake, with the aim of providing more accurate shaking estimates for the investigation of the sources of uncertainties within loss evaluations, based on damage data from this event. The various techniques make differing use of the available ground-motion recordings of this earthquake and by consequence the estimates obtained by the different approaches are associated with differing uncertainties. Ground motions on the French Antilles are affected by strong local site effects, which have been extensively investigated in previous studies. In this article, use is made of these studies in order to improve the shaking estimates. It is shown that the simple methods neglecting the spatial correlation of earthquake shaking lead to uncertainties similar to those predicted by empirical ground-motion models and that these are uniform across the whole of Guadeloupe. In contrast, methods (such as the ShakeMap approach) that take account of the spatial correlation in motions demonstrate that shaking within roughly 10 km of a recording station (covering a significant portion of the investigated area) can be defined with reasonable accuracy but that motions at more distant points are not well constrained.  相似文献   

12.
综合考虑震中地区地质构造背景、震源机制解结果、余震分布以及我国西部地区地震动参数衰减特征,运用考虑场地效应的震动图快速生成方法,将收集到的62组强震台站的峰值加速度作为插值使用,估计了2014年8月3日云南鲁甸MS6.5地震峰值加速度震动图. 利用地震后获得的强震记录计算了强震台站观测值与借助经验性衰减关系得到的估计值之间的系统偏差,校正了缺少台站地区借助经验性衰减关系得到的估计值,获得了校正后的峰值加速度分布图. 结果显示,鲁甸MS6.5地震的地震动峰值加速度随距离的衰减速度比前人对我国西部衰减统计的结果更快,对数偏差校正的结果更符合本次地震的衰减规律. 校正后的峰值加速度大于40 cm/s2的区域面积近8000 km2,比未经校正的峰值加速度大于40 cm/s2的面积减小了40%左右.   相似文献   

13.
The 1994 Northridge earthquake occurred underneath a densely populated metropolitan area, and was recorded by over 200 strong motion stations in the metropolitan area and vicinity. This rare coincidence made it an ideal case to study, in statistical sense, the correlation of damage to structures with the level of strong shaking, in particular with respect to (1) instrumental characteristics of shaking and (2) the reported site intensity scale. In this paper, statistics for the incidence of red-tagged building in 1 × 1 km2 blocks in San Fernando Valley and Los Angeles is presented and analyzed, as function of the observed peak ground velocity or the local intensity of shaking. The ‘observed’ peak velocity is estimated from contour maps based on the recorded strong motion. The intensity of shaking is estimated from the published intensity map and from our modification of this map to make it more consistent with observed high damage to buildings in some localized areas. Finally, empirical scaling equations are derived which predict the average density of red-tagged buildings (per km2) as a function of peak ground velocity or site intensity of shaking. These scaling equations are specific to the region studied, and apply to Wooden Frame Construction, typical of post World War II period, which is the prevailing building type in the sample studied. These can be used to predict the density of red-tagged buildings per km2 in San Fernando Valley and in Los Angeles for a scenario earthquake or for an ensemble of earthquakes during specified exposure, within the framework of probabilistic seismic hazard analysis. Such predictions will be useful to government officials for emergency planning, to the insurance industry for realistic assessment of insured losses, and to structural engineers for assessment of the overall performance of this type of buildings.  相似文献   

14.
Ground motion prediction equations (GMPE) in terms of macroseismic intensity are a prerequisite for intensity-based shake maps and seismic hazard assessment and have the advantage of direct relation to earthquake damage and good data availability also for historical events. In this study, we derive GMPE for macroseismic intensity for the Campania region in southern Italy. This region is highly exposed to the seismic hazard related to the high seismicity with moderate- to large-magnitude earthquakes in the Appenninic belt. The relations are based on physical considerations and are easy to implement for the user. The uncertainties in earthquake source parameters are accounted for through a Monte Carlo approach and results are compared to those obtained through a standard regression scheme. One relation takes into account the finite dimensions of the fault plane and describes the site intensity as a function of Joyner–Boore distance. Additionally, a relation describing the intensity as a function of epicentral distance is derived for implementation in cases where the dimensions of the fault plane are unknown. The relations are based on an extensive dataset of macroseismic intensities for large earthquakes in the Campania region and are valid in the magnitude range M w = 6.3–7.0 for shallow crustal earthquakes. Results indicate that the uncertainties in earthquake source parameters are negligible in comparison to the spread in the intensity data. The GMPE provide a good overall fit to historical earthquakes in the region and can provide the intensities for a future earthquake within 1 intensity unit.  相似文献   

15.
王韶鹏    卢育霞    石玉成  刘北  李韬  贺海浪 《世界地震工程》2022,38(3):192-202
2021年5月22日青海省玛多县发生Mw7.3级地震。震后,根据初步估计的断层走向和破裂长度,基于YU15地震动衰减模型和三种NGA-West2(Next Generation Attenuation-West2)地震动衰减模型快速产出地震区震动图及理论烈度图。在获得强震记录和地表破裂长度信息后,对预测结果进行修正。通过比较理论烈度与调查烈度,并结合震动图分布形态以及衰减模型在2016年新疆呼图壁Mw6.0地震中的应用情况对四种地震动衰减模型的适用性进行了分析。结果表明:在台网稀疏地区,基于地震动衰减模型可在震后快速获得地震动分布,并产出具有应用价值的地震影响场;NGA-West2模型在断层破裂较长的大震中表现优于YU15模型,而在中强地震中后者适用性更强;近实时强震动记录可用来检验模型的适用性并对预测结果进行修正;断层破裂尺度、震源机制和破裂过程等信息的准确估计可有效提高地震影响场预测精度。  相似文献   

16.
利用华北地区地震活动性资料,建立了地震危险性计算的一致性模型.在此模型的基础上,得出了北京、天津、唐山和济南等7个城市未来2500年内地震的时空强度分布,并计算了2500年回复周期的地震动峰值加速度(PGA).结果表明,唐山和太原的PGA最大(>0.2g),石家庄和北京次之(≈0.17g).对华北地区2500年地震记录的正演计算结果表明,太原和唐山地区的潜在地震危险最有可能来源于震级在6.0~7.0、震中距离在12~15km的地震活动;而北京、天津和石家庄地区则可能来源于震级在5.5~6.0、震中距离在10km左右的地震活动.采用IBC(International Building Code)方法计算后的结果显示,太原、唐山等地区的PGA与2001年我国地震动峰值加速度值基本一致,与此地区的较高地震活动性特征相符.利用随机震源模型,还给出了影响此7个城市的最大地震记录的加速度、速度及位移时程曲线,这对本区工程建筑的抗震性设计以及对救援设施的选址等有重要作用.  相似文献   

17.
Modern earthquake loss models make use of earthquake catalogs relevant to the seismic hazard assessment upon seismicity and seismotectonic analysis. The main objective of this paper is to investigate a recently compiled catalog (National Institute of Meteorology or INM catalog: 412-2011) and to generate seismic hazard maps through classical probabilistic seismic hazard assessment (PSHA) and smoothed-gridded seismicity models for Tunisia. It is now established with the local earthquake bulletin that the recent seismicity of Tunisia is sparse and moderate. Therefore, efforts must be undertaken to elaborate a robust hazard analysis for risk assessment and seismic design purposes. These recommendations follow the recently published reports by the World Bank that describe the seismic risk in Tunis City as being beyond a tolerable level with an MSK intensity level of VII. Some attempts were made during the past two decades to assess the seismic hazard for Tunisia and they have mostly failed to properly investigate the historical and instrumental seismicity catalog. This limitation also exists for the key aspect of epistemic and random uncertainties impact on the final seismic hazard assessment. This study also investigates new ground motion prediction equations suitable for use in Tunisia. The methodology applied herein uses, for the first time in PSHA of Tunisia, seismicity parameters integrated in logic tree framework to capture epistemic uncertainties through three different seismic source models. It also makes use of the recently released version of OpenQuake engine; an open-source tool for seismic hazard and risk assessment developed in the framework of the Global Earthquake Model.  相似文献   

18.
In this paper, the relationships between seismic intensity and peak ground shaking are studied under no specific condition, separately or simultaneously considering the number of building storey and site category, based on data of mean peak values of horizontal ground motion recorded during strong earthquakes. Then, according to the statistical results, the variation of mean peak value with intensity rating is discussed, and schemes of peak ground velocity, peak ground acceleration or response spectrum of an designed earthquake converted from intensity rating are recommended. Finally, a methodology of converting seismic intensity from response spectrum of design earthquake is also discussed, and the conversion scheme is recommended. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 32–40, 1991. This paper is sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

19.
Prephotographic depictions of earthquakes can contain important information on the types and amount of damage due to a large earthquake in historic times. Care must be used in evaluating such depictions because some are more accurate than others, and many depictions contain little that is of value in making estimates of seismic intensity. Depictions of two earthquakes, in 1692 at Jamaica and in 1843 at Guadeloupe, illustrate the utility of depictions in intensity estimation. A depiction of the scene at Port Royal in Jamaica of the 1692 shock suggests that the major damage was caused by soil slumping and a tsunami, with the ground shaking itself probably only having been about MMI VII. Two depictions of Pointe-à-Pitre at Guadeloupe after the 1843 event contain evidence that the town was damaged by strong ground shaking as well as by major soil failures. The ground shaking here was probably MMI VII–IX. These and other pictures are being assembled for a monograph of prephotographic earthquake depictions in the Americas.  相似文献   

20.
Depths of earthquake occurrence and large slip distribution are critical for seismic hazard assessment.Numerous examples show that earthquakes with similar magnitudes,however,can result in significantly different ground shaking and damage.One of the critical factors is that whether the large slip was generated near the ground surface.In this article,we reviewed two aspects that are important on this regard,shallow slip deficit and nucleation depth.Understanding how shallow future earthquakes may nucleate in particular regions,such as shale gas fields,is critical for hazard assessment.Whether or not a strong earthquake may slip significantly at shallow depths(less than 3 km)plays crucial rules in seismic hazard preparation and should be further investigated by integrating high-resolution fault zone observations,dynamic rupture simulation,and fault zone properties.Moreover,precisely resolving shallow depth and slip distribution of earthquakes demands InSAR and/or other image data that can better capture the near-fault deformation to constrain the source parameters of earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号