首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
2017年西藏米林6.9级地震震源参数及其构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
白玲  李国辉  宋博文 《地球物理学报》2017,60(12):4956-4963
北京时间2017年11月18日06时34分,西藏自治区林芝市米林县发生了M6.9级地震.地震位于印度板块向欧亚板块插入的东北犄角,是喜马拉雅造山带地壳缩短和构造旋转变形最为强烈的部位.本研究利用多种近震和远震台网记录的波形和到时数据,对该地震的震源位置和发震时刻进行重新确定.结果表明,地震震源深度为海平面以下7 km±2 km (或地表以下10 km±2 km),经纬度为(29.87°N±0.01°N,95.02°E±0.01°E).结合其他地球物理和地质学资料,我们推测该地震发生在NNW向西兴拉断裂带,南迦巴瓦构造结北东向的逆冲推覆和青藏高原东南向逃逸的侧向挤出是该地震发生的主要构造背景.  相似文献   

2.
许力生  张旭  张喆 《地球物理学报》1954,63(11):4012-4022
2020年6月23日15时29分04秒(UTC),在墨西哥南部瓦哈卡州发生了一次震级为MW7.4的地震,我们利用全球地震台网(GSN)和国际数字地震台网联盟(FDSN)台网的长周期和宽频带P波数据反演分析了这次地震的震源机制、震源时间函数以及时空破裂过程.根据反演结果,这次地震的矩心震中位于15.96°N,95.89°W,矩心深度约为22 km;地震持续15 s左右,释放地震矩1.24×1020 N·m,相当于矩震级MW7.4;破裂过程比较简单,仅有一个走向和倾向方向尺度相当的凹凸体错动,最大位错达8.1 m,位于21 km深处.凹凸体破裂主要沿断层的滑动方向呈双侧破裂,两个优势破裂方向在地表投影的方位分别位于60°和270°左右.综合构造背景、震源位置、余震分布、震源机制以及时空破裂过程,我们相信这次地震是发生在北美大陆板块和太平洋海底板块相互作用的结果.海底板块朝着大约60°左右的方位运动,以大约22°的倾角插入大陆板块,造成一个凹凸体错动,形成了这次地震.  相似文献   

3.
基于青海和甘肃区域地震台网记录的宽频带地震波形和震相观测数据,利用近震全波形反演方法和双差定位方法分别对2022年1月23日青海德令哈MS5.8地震进行全矩张量反演和地震序列重定位研究。矩张量反演结果表明主震为一次典型走滑型地震,最佳断层面节面Ⅰ走向78°、倾角88°、滑动角-22°,节面Ⅱ走向169°、倾角68°、滑动角-177°,矩心深度为9 km,矩震级为MW=5.5。定位结果显示余震优势展布方向为NNW-SSE,长度约16 km,余震震源深度优势分布在7~12 km之间。综合分析表明,节面Ⅱ与余震精定位所勾勒出的断层面走向和倾向较为一致,推断NNW走向的断层面为可能发震断层面,认为德令哈地震是发生在祁连山断裂带的向W倾、倾角约为68°的右旋走滑断裂上。在印度板块向欧亚板块俯冲挤压作用下,青藏高原东北部构造块体应力不断积累,造成祁连山断裂带内断层失稳而发生此次青海德令哈MS5.8地震。  相似文献   

4.
2015年7月3日皮山6.5级地震发震构造初步研究   总被引:11,自引:1,他引:10       下载免费PDF全文
李金  王琼  吴传勇  向元 《地球物理学报》2016,59(8):2859-2870
基于新疆区域数字地震台网记录,采用CAP(Cut and Paste)方法反演了2015年7月3日皮山6.5级主震和部分MS3.6以上余震的震源机制解和震源深度;采用HypoDD方法重新定位了序列中ML2.5以上地震序列的震源位置,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数.基于上述研究,综合分析了皮山6.5级地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,利用CAP方法得到的最佳双力偶机制解节面I:走向280°/倾角60°/滑动角90°;节面Ⅱ:走向100°/倾角30°/滑动角90°,矩心深度19 km,表明该地震为一次逆冲型地震事件.大部分MS3.6以上余震震源机制与主震具有一定的相似性.双差定位结果显示,ML2.5以上的余震序列主要分布在主震的西南方向,深度主要分布在0~15 km范围内,余震分布显示出与发震构造泽普隐伏断裂一致的倾向南西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向104°/倾角34°/滑动角94°,该结果与主震震源机制解中节面Ⅱ的滑动角较为接近,绝大多数余震发生在断层面附近10 km左右的区域.根据本研究得到的震源机制、精定位结果以及利用小震分布和区域应力场拟合得到的断层面的参数,结合震源区地质构造情况,初步给出了此次皮山6.5级地震的发震模式.  相似文献   

5.
使用中国数字地震台网记录的区域宽频带波形,通过频率域和时间域多步反演,研究了2013年四川芦山“4·20”7.0级强烈地震的震源运动学特征.基于点源的震源机制解揭示:地震发震断层面参数分别为走向214°/倾角47°/滑动角96°,表现为一次高倾角的逆冲型事件.矩心在水平方向上位于震中(30.303°N/102.988°E)西南向约4.5 km,矩心深度约17 km.平均总标量地震矩M0为1.16×1019 N·m,矩震级Mw约6.6.进一步模拟高达0.5 Hz高频波形,获得了芦山地震破裂过程图像,结果显示:此地震为一次不对称双侧破裂事件.破裂半径约15 km,整个破裂面积为706.7 km2,平均滑动量约0.231 m.破裂在8 s内释放了大多数能量.震后0~3 s内,破裂以孕震点为中心向四周同时扩展,3 s后,破裂表现出明显的方向性,主要向北北东扩展,导致位于震中北东向多数台站视破裂持续时间总体偏小,最小值为4 s.破裂约8 s后基本停止.  相似文献   

6.
1 基本参数  中国地震台网测定,2004年10月23日16时56分(北京时间)日本新泻县发生70级地震,震中位置:373°N,1390°W,震源深度33km。据美国地质调查局NEIC测定,此次地震震级为69级;日本气象厅测定的震级为68级。目前已发生有感余震共计440多次。2 构造背景  日本位于著名的环太平洋——被称为火环的地震活动板块边界上。日本经常发生地震与几个不同尺度的构造板块相互运动有关,包括太平洋板块、菲律宾板块、鄂霍次克海板块以及阿穆尔河板块。10月23日的强烈地震发生在日本海沟东大约350km的鄂霍次克海板块内,在该海沟处,太平洋板块…  相似文献   

7.
宋超  盖增喜 《地球物理学报》2018,61(4):1225-1237
据中国地震台网测定,北京时间2015年4月15日15时39分,在内蒙古自治区阿拉善左旗(39.8°N,106.3°E)发生MS5.8地震,震源深度为10 km.地震发生后多家机构对其开展了研究,本文使用喜马拉雅Ⅱ期布设在南北地震带北段的台站观测数据,通过走时反演和波形拟合反演的迭代,获得了该地区地壳一维速度结构,接着利用直达P波观测与理论走时差对震中位置重定位,然后反演地震的最佳双力偶解以及震源深度,最终得到了区域速度结构、地震的三维坐标、发震时刻以及震源机制解.结果显示,此次地震发生于世界时2015年4月15日7时39分26.718s,震中(39.7663°N,106.4304°E),震源矩心深度18 km,矩震级MW5.25,节面Ⅰ走向176°,倾角85°,滑动角-180°,节面Ⅱ走向86°,倾角90°,滑动角-5°.结合该区域断裂带构造运动分析,本文认为此次地震是左旋走滑破裂,略带正断分量,断层面是节面Ⅱ,走向为NEE(近E-W)向,发震构造为震中附近的E-W向隐伏断裂.  相似文献   

8.
2008年10月5日新疆乌恰Mw6.7级地震发生在南天山、帕米尔高原及塔里木盆地交汇地带,基于地震波反演的震源机制解确定的震源深度存在较大差异.本文利用日本ALOS卫星的PALSAR图像,获得了本次地震的同震形变场,基于卫星视线向(LOS)和方位向(Azimuth)的形变,采用均匀弹性半无限位错模型和有界最小二乘(BVLS)算法,以网格矩形位错元法对发震断层的几何产状、滑移及分布进行了估算,结果表明本次地震以逆断破裂为主,断层面上最大位错量接近3.4 m,形变中心位于73.8040°E,39.5335°N,深度约5 km,震级估算为Mw6.6;地震发生在走向46°,倾角48°的断层上,发震断层长30 km,宽14 km,闭锁深度9 km,符合该地区浅源地震多发的构造特点,发震断层为乌合沙鲁断裂带.InSAR反演的滑移形变主要集中于地下2~7 km,表明乌恰地震为浅源地震,可能与该断层附近历史地震未完全释放的残余应力积累有关.同时,InSAR反演的断层位错分布呈现双破裂特征,震级分别为Mw6.5和Mw6.1,可能与本次地震的主震和余震相对应,也可能是由主震激发而产生的两组破裂.  相似文献   

9.
于2011年3月11日发生在日本东北部的MW9.0级逆冲型板间地震是日本有地震记录以来震级最大的一次地震.本研究基于NIED F-net矩张量解目录中的震源机制解,选取两个长轴相互垂直的矩形区域进行应力场2D反演,获取了日本海沟俯冲带地区应力场的空间及时间分布图像.结果表明:主震前,俯冲带地区应力状态在空间上大体趋于一致,即应力轴(P轴、σ1轴及SHmax轴)系统性地倾向板块汇聚方向,P轴、σ1轴倾角整体偏缓(<30°),且远离震源区及日本海沟东侧区域内的应力轴倾角普遍大于主震震源区内应力轴倾角;主震前,受2003年5月26日在宫城县北部发生的MW7.0地震影响,位于MW9.0地震震源区西北侧的应力场出现明显扰动,σ1轴倾向顺时针偏转150°~180°,并于之后大体恢复至震前状态,同期其他地区没有明显变化,这种情况可能和主震断层局部(深部)的前兆性滑动有关;主震后,距离震源区较远处应力场变化不大,主震震源区内应力场发生显著改变,P轴及σ1轴均以大角度(>60°)倾伏于板块汇聚方向,SHmax轴顺时针偏转60°~90°且在日本海沟附近普遍平行于海沟轴.这项研究以时空图像的方式展示了大地震前应力场变化的特点,反映了大地震孕震过程中构造与地震的相互作用,对于理解大地震孕震过程有重要意义.  相似文献   

10.
文中对2018年12月1日发生在美国阿拉斯加州的MW7. 0地震开展了震源参数以及破裂过程的反演研究,并综合研究结果探讨了此次地震发生的动力学背景。震源机制反演结果表明,此次地震为拉张型正断地震,矩心相对于初始震中位置向NE偏移约10km。破裂过程反演的结果显示此次地震的滑动量分布比较集中,主要发生在长30km、宽20km的区域内,最大滑移量达3. 6m。此外,破裂并非简单地以震源为中心对称分布。此次地震的破裂方向和余震分布均呈NE向延伸的趋势,发震断层的西南段则出现地震空区,由此可初步判断该地震是一次发生在太平洋板块与北美板块俯冲碰撞带后缘的弧后拉张环境中的典型正断型地震事件。由于太平洋俯冲板块在向N俯冲的过程中受高温高压作用影响,造成太平洋板片的俯冲角度变陡、向后弯曲变形,由此在碰撞带的后缘形成拉张环境,造成此次阿拉斯加MW7. 0地震的发生。  相似文献   

11.
On November 18, 2017, a MS6.9 earthquake struck Mainling County, Tibet, with a depth of 10km. The earthquake occurred at the eastern Himalaya syntaxis. The Namche Barwan moved northward relative to the Himalayan terrane and was subducted deeply beneath the Lhasa terrane, forming the eastern syntaxis after the collision of the Indian plate and Asian plates. Firstly, this paper uses the far and near field broadband seismic waveform for joint inversion (CAPJoint method)of the earthquake focal mechanism. Two groups of nodal planes are obtained after 1000 times Bootstrap test. The strike, dip and rake of the best solution are calculated to be 302°, 76° and 84° (the nodal plane Ⅰ)and 138°, 27° and 104° (the nodal plane Ⅱ), respectively. This event was captured by interferometric synthetic aperture radar (InSAR)measurements from the Sentinel-1A radar satellite, which provide the opportunity to determine the fault plane, as well as the co-seismic slip distribution, and assess the seismic hazards. The overall trend of the deformation field revealed by InSAR is consistent with the GPS displacement field released by the Gan Wei-Jun's team. Geodesy (InSAR and GPS)observation of the earthquake deformation field shows the northeastern side of the epicenter uplifting and the southwestern side sinking. According to geodetic measurements and the thrust characteristics of fault deformation field, we speculate that the nodal plane Ⅰ is the true rupture plane. Secondly, based on the focal mechanism, we use InSAR data as the constraint to invert for the fine slip distribution on the fault plane. Our best model suggests that the seismogenic fault is a NW-SE striking thrust fault with a high angle. Combined with the slip distribution and aftershocks, we suggest that the earthquake is a high-angle thrust event, which is caused by the NE-dipping thrust beneath the Namche Barwa syntaxis subducted deeply beneath the Lhasa terrane.  相似文献   

12.
陈晨  胥颐 《地球物理学报》2013,56(12):4028-4036
利用四川省地震台网的震相数据和双差定位方法对芦山MS7.0级地震及其余震序列进行了精确定位,根据余震分布确定了发震断层的位置和断层面的几何特征,并对余震活动进行了分析.结果显示,芦山MS7.0级地震的震中位于30.28°N、102.99°E,震源深度为16.33 km.余震沿发震断层向主震两侧延伸,主要分布在长约32 km、宽约15~20 km、深度为5~24 km的范围内.地震破裂带朝西南方向扩展范围较大,东北方向略小,余震震级随时间迅速衰减.震源深度剖面清晰地显示出发震断层的逆冲破裂特征,推测发震断层为大川—双石断裂东侧约10 km的隐伏断层.该断层走向217°、倾向北西,倾角约45°,产状与大川—双石断裂相比略缓,它们同属龙门山前山断裂带的叠瓦状逆冲断层系.受发震断裂影响,部分余震沿大川—双石断裂分布,西北方向的余震延伸至宝兴杂岩体的东南缘,与汶川地震的破裂带之间存在50 km左右的地震空区,有可能成为未来发生强震的潜在危险区.  相似文献   

13.
宫猛  徐锡伟  李康 《地球物理学报》2020,63(3):1224-1234
本文收集使用紫坪铺水库台网记录到的汶川地震主震P波波形资料,利用P波反投影叠加法获取了2008年5月12日汶川M_W7.9地震起始破裂的时空演化过程.通过分析本次大地震起始破裂阶段(0~1s)破裂点在三维空间内的分布特征,确定了本次大地震起始破裂位置及起始破裂断层几何结构模型.得到以下结果:汶川地震起始破裂点位于31.013±0.002°N、103.392±0.002°E,震源深度为8.2±0.4km,发震时刻为2008年5月12日14∶27∶58.80±0.4.汶川地震起始破裂的最佳断层面走向为NE48°,倾向NW35°,起始阶段破裂的深度范围为地下7.5~9km.  相似文献   

14.
2015年4 月25 日尼泊尔MW7.8特大地震发生在喜马拉雅山南麓, 震源机制解表明该地震为低角度逆冲型地震.通过收集地震区的活动构造研究资料、卫星影像解释和野外实地考察,认为尼泊尔MW7.8地震区地表分布三条主要的逆冲断裂,由北向南分别为喜马拉雅主中央断裂(MCT)、喜马拉雅主边界断裂(MBT)和喜马拉雅主前缘断裂(MFT).主边界断裂和主前缘断裂为晚更新世以来的活动断裂,但至今为止也没有发现喜马拉雅主中央断裂晚第四纪活动的依据.野外调查未发现尼泊尔MW7.8地震在喜马拉雅山南麓的主要断裂上形成地震地表破裂带.喜马拉雅山南麓的构造特征为薄皮构造,表现为浅部陡倾断坡-深部缓倾断坪(7°左右)-深部断坡(11°左右)的构造样式.深部断坡-断坪又称为主喜马拉雅断裂(MHT),其中的深部断坡是尼泊尔地震主震(MW7.8)和最大余震(MW7.3)的发震构造.余震大致沿北西向的高喜马拉雅山前缘呈条带状分布,主要分布在低喜马拉雅山区内.剖面上,余震大致分布在主喜马拉雅断裂的上盘推覆体内,推测尼泊尔MW7.8地震时深部断坡发生错动,其地震位移沿深部断坡-断坪向南传播引起上盘的褶皱带缩短变形,进而触发低喜马拉雅和次喜马拉雅褶皱带内产生次级破裂从而产生余震.  相似文献   

15.
2014年3月10日13时18分(北京时间)美国加利福尼亚州西北岸发生Mw6.9级地震,震中位于戈尔达板块内部.本文利用国际地震学研究联合会(IRIS)地震数据中心提供的远场体波数据,通过波形反演的方法来研究此次地震的震源破裂过程,并分析未造成重大人员伤亡及诱发海啸的原因,为该地区地球动力学的研究提供依据.选取19个方位角覆盖均匀的远场P波垂向波形记录和13个近场P波初动符号进行约束,基于剪切位错点源模型确定此次地震的震源机制解.结合地质构造背景资料,确定断层破裂面的走向.在考虑海水层多次反射效应的影响下,采用18个远场P波垂向波形数据和21个远场SH波切向波形数据,利用有限断层模型,将断层面剖分为17×9块子断层单元来模拟破裂面上滑动的时空分布,通过波形反演的方法获得此次地震的震源破裂过程.利用海水层地壳模型,剪切位错点源模型的反演结果为:走向323°,倾角86.1°,滑动角-180°,震源深度为10.6km.有限断层模型的反演结果表明,此次地震的破裂过程相对简单,主要滑动量集中于震源上方35km×9km的区域内,破裂时间持续19s左右,平均破裂传播速度约为2.7km·s-1,较大滑动量均沿着走向分布,最大滑动量为249cm.此次地震为发生在戈尔达板块内部的一次Mw6.9级的陡倾角走滑型地震.此次地震为单纯的走滑型地震,断层面接近竖直方向,且发生在洋壳底部,因此破坏力不大,不会对沿岸城市造成重大损失.陡倾角断层在走滑错动的过程中不会使海底地形发生大幅度变化,不会引起大面积水体的突然升降,因此不会诱发大规模海啸.  相似文献   

16.
2015年9月17日6时54分32秒(北京时间)智利中部伊拉佩尔附近(震中31.57°S,71.67°W)发生了一次M_w8.3大地震,在此次地震震中以南约500 km处的马乌莱地区曾于2010年2月27日14时34分11秒发生过一次M_w8.8强震(震中36.12°S,72.90°W),两次地震余震分布区之间有约75 km的地震空区.本文利用远场体波与面波波形,基于有限断层模型,反演了这两次地震的震源破裂过程.结果显示这两次地震均为逆冲型大地震,2015年伊拉佩尔M_w8.3地震的平均滑动角度为107°,平均滑动量为2.43 m,平均破裂速度为1.82 km·s~(-1),标量地震矩为3.28×10~(21)Nm,95%的标量地震矩在104 s内得到了释放.最大滑动量约8 m,位于沿走向75 km,深度8 km处.2010年马乌莱M_w8.8地震的平均滑动角度为109°,平均滑动量为4.95 m,平均破裂速度1.90 km·s~(-1),标量地震矩为1.86×10~(22)Nm,95%的标量地震矩在121 s内得到了释放.最大滑动量约12.5 m,位于沿走向100 km,深度21 km处.2015年伊拉佩尔M_w8.3地震浅部更大的滑动量应该是其引起了较大海啸的一个原因.基于破裂滑动分布,我们计算了这两次地震引起的周边俯冲带上静态库仑应力变化,结果显示两次地震均显著增加了周边俯冲带上的库仑应力,2010年马乌莱地震使得2015.年伊拉佩尔地震震源区附近的库仑应力增加了(0.01~0.15)×10~5Pa,从应力积累的角度看,2010年马乌莱地震有利于2015年伊拉佩尔地震的发生,对后者的发生起到了促进作用.  相似文献   

17.
2014年2月12日在新疆于田县发生了MS7.3地震,主震前一天在震区发生了MS5.4前震,震后余震活动频繁,由于震区台站十分稀疏和不均匀、地壳速度结构复杂,台网常规定位结果精度有限,很难从中获得序列的空间分布特征和活动趋势的正确认识.本文首先利用位于震区附近的于田地震台5年记录的远震波形数据,采用接收函数方法研究了震区附近的地壳结构,建立了震源区的地壳速度模型.在此基础上,联合震相到时和方位角对2014年于田MS7.3地震序列(从2014年02月11日-2014年04月30日,共计577次地震)进行了重新绝对定位.结果显示,(1) 重定位后的前震和主震震中位置明显向地表破裂带及其附近的阿尔金分支断裂(南肖尔库勒断裂和阿什库勒-肖尔库勒断裂)靠近,两者相距5.4 km,主震位置为36.076°N、82.576°E,震源深度为22 km, 前震位置为36.055°N、82.522°E,震源深度为19 km;(2) 本文重定位结果显示,余震序列沿NEE-SWW展布,优势分布长度约73 km、宽度约16 km,平均震源深度为14.8 km,其中77%的余震分布在地表破裂带的西南端,这部分余震中少数沿阿什库勒-肖尔库勒断裂分布,绝大多数沿北东东向的南肖尔库勒断裂分布,位于地表破裂带东北端的余震沿阿什库勒-肖尔库勒断裂分布,但发生在地表破裂带的余震极少;重定位后,位于地表破裂带西南侧的震中分布由台网目录的近南北向变为北东向,与地表破裂带、南肖尔库勒断裂和阿什库勒-肖尔库勒断裂走向一致;(3) 沿重定位剖面的地震分布,可推断位于地表破裂带西南段的南肖尔库勒断裂与位于北东段的阿什库勒-肖尔库勒断裂倾向反向,南肖尔库勒断裂的倾向为SE,阿什库勒-肖尔库勒断裂的倾向为NW,这与本次地震野外考察得到的断裂性质一致.综合重定位结果、地表破裂带分布、震源机制解、南肖尔库勒断裂和阿什库勒-肖尔库勒断裂的性质认为,2014年于田MS7.3地震的发震构造为阿尔金断裂西南尾段的两条分支断裂——南肖尔库勒断裂和阿什库勒-肖尔库勒断裂.  相似文献   

18.
The Akto M_S6. 7 earthquake occurred near the western end of the Muji fault basin in the top of the Pamir syntaxis. The main shock of this earthquake is complicated and the focal mechanism solutions based on the seismic wave inversions are different. Based on the Sentinel-1 SAR data,the coseismal deformation field of the earthquake is obtained by In SAR technique. Based on the elastic half-space dislocation model,the geometrical parameters and the slip distribution model are determined by nonlinear and linear inversion algorithms. The results show that the distributed slip model can well explain the coseismic deformation field. The earthquake includes at least two rupture events,which are located at 7 km(74. 11°E,39. 25°N)and 33 km(74. 49°E,39. 16°N)east from the epicenter according to the CENC. The deformation field caused by the earthquake shows a symmetry distribution,with the maximum LOS deformation of 20 cm. The main seismic slip is concentrated in the 0-20 km depth,and the maximum slip is 0. 84 m. The seismic fault is the Muji fault,and this earthquake indicates that the northeastward push of the Indian plate is enhanced.  相似文献   

19.
2017年8月9日的新疆精河MS6.6地震是近年来天山北缘发生的最大地震,震中位于由多条逆冲断层组成的库松木契克断裂带内.由于震源较深、构造形变复杂、区域地震台站相对稀疏,仅根据震源机制解、余震分布和InSAR观测结果等难以直接判定发震构造.本文针对倾滑型地震发展了一种基于区域地震波形的破裂方向性测定方法,利用余震作为参考地震进行路径校正,根据主震和参考地震的波形时移差和Pn-Pg到时差分别确定主震在水平方向和深度方向的破裂尺度,进而推断同震破裂的延展方向和延伸尺度.本文在反演了主震的点源参数后,应用新发展的方法测定了地震的破裂方向性.点源反演结果显示,精河地震是一个发生在中地壳的高角度逆冲地震,矩震级约6.2,质心深度21km,震源持续时间5.5s,两个双力偶节面分别为102°/45°/106°(NP1)和259°/47°/74°(NP2).破裂方向性分析结果显示,地震的破裂面为南倾的NP1节面,地震沿着破裂起始点向西南方向、向下破裂,总破裂长度约11.5km,其中,沿深度的破裂范围约7km,沿水平的破裂范围约9km,平均破裂速度约2.1km·s-1.综合区域地质资料、卫星影像等判定本次地震的发震断层为精河南断层,地震可能只破裂了断层的下段(17~25km),并未破出地表.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号