首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study describes the temporal variability of the water fCO2 as well as the different driving forces controlling this variability, on time scales from daily to seasonal, in the Rio San Pedro, a tidal creek located in a salt marsh area in the Bay of Cadiz (SW Iberian Peninsula). This shallow tidal creek system is affected by effluents of organic matter and nutrients from the surrounding marine fish farms. Continuous pCO2, salinity and temperature were recorded for four periods of approximately one month, between February and September in 2004.Major processes controlling the CO2 variability are related to three different time scales. Daily variations in fCO2 are controlled by tidal advection and mixing of the water from within the creek and the seawater that enters from the Bay of Cadiz. Significant cyclical variations of the fCO2 have been observed with the maximum values occurring at low tide. On a fortnightly time scale, the amplitude of the daily variability of fCO2 is modulated by the variations in the residence time of the water within the creek, which are related to the spring–neap tide sequence.On a third time scale, high seasonal variability is observed for the temperature, salinity and fCO2. Maximum and minimum values for fCO2 were 380 µatm and 3760 µatm for February and July respectively. Data suggest that seasonal variability is related to the seasonal variability in discharges from the fish farm and to the increase with temperature of organic matter respiratory processes in the tidal creek. The fCO2 values observed are in the same range as several highly polluted European estuaries or waters surrounding mangrove forests. From the air–water CO2 flux computed, it can be concluded that the Rio San Pedro acts as a source of CO2 to the atmosphere throughout the year, with the summer accounting for the higher average monthly flux.  相似文献   

2.
The effect of shale composition and fabric upon pore structure and CH4 sorption is investigated for potential shale gas reservoirs in the Western Canadian Sedimentary Basin (WCSB). Devonian–Mississippian (D–M) and Jurassic shales have complex, heterogeneous pore volume distributions as identified by low pressure CO2 and N2 sorption, and high pressure Hg porosimetry. Thermally mature D–M shales (1.6–2.5% VRo) have Dubinin–Radushkevich (D–R) CO2 micropore volumes ranging between 0.3 and 1.2 cc/100 g and N2 BET surface areas of 5–31 m2/g. Jurassic shales, which are invariably of lower thermal maturity ranging from 0.9 to 1.3% VRo, than D–M shales have smaller D–R CO2 micropore volumes and N2 BET surface areas, typically in the range of 0.23–0.63 cc/100 g (CO2) and 1–9 m2/g (N2).  相似文献   

3.
Chesapeake Bay is a large and productive estuary that has received close scrutiny in recent years because of indications that its water quality and biota have been damaged by man's activities. Data on primary production for the estuary as a whole, however, are surprisingly sparse. We describe here the distribution of photosynthetic carbon assimilation by phytoplankton in Chesapeake Bay, and relate productivity patterns to hydrographic characteristics of the estuary. Between March 1982 and April 1983, a series of four cruises was conducted on Chesapeake Bay, and two cruises on the urbanized Delaware Bay for comparison. The upper Chesapeake and Delaware were highly turbid with high concentrations of suspended particulate matter and dissolved inorganic nutrients. Low chlorophyll concentrations were usually found in these areas of high turbidity, despite the abundance of nutrients, suggesting light limitation. Application of Wofsy's (1983) model of phytoplanton growth confirmed this suggestion. Chlorophyll and productivity maxima usually occurred seaward of the turbidity maxima where light penetration increased and suffient nutrients were present to support active phytoplankton growth. Further seaward of the chlorophyll maxima in the Chesapeake, the photic zone depth increased, concentrations of nutrients decreased, and phytoplankton biomass decreased, suggesting that nutrient availability, rather than light, controlled phytoplankton growth in the lower portion of the estuary. In contrast to the Chesapeake, Delaware Bay was more turbid, had generally higher nutrient concentrations, and was lower in phytoplankton productivity. The chlorophyll maxima and region of rapid phytoplankton growth occurred further toward the lower estuary and shelf regions in Delaware Bay because the high turbidity extended further seaward. Nutrients were never depleted at the shelf end of the estuary sufficiently to retard phytoplankton growth. Photosynthesis-irradiance (P-I) curves from simulated in situ and constant intensity incubations showed a strong correlation of the light-limited slope (aB) with the light-saturated rate ( ) on each cruise. Spatial variations in corresponded to patterns of phytoplankton abundance, as did integral production (PP) and carbon-based growth rates (μC, μm), and photosynthetic parameters varied significantly with temperature.  相似文献   

4.
The distribution of the total alkalinity (TA), the total inorganic carbon (TCO2), the calcium (Ca), and the CO2 partial pressure in the waters of the northwestern Bering Sea (Anadyr Bay) and in the western part of the Chukchi Sea is considered according to the data obtained in August–September 2002. It is shown that the areas treated were sinks of atmospheric CO2 in the summer of 2002: the total CO2 exchange between the atmosphere and the seawater was equal to about −20 mmol C/(m2 day). The net community production according to the TCO2 decrease in the upper photic layer in the west of the Chukchi Sea and in the Anadyr Bay waters amounted to 48 ± 12 and 72 ± 18 g C/(m2 year), respectively. The comparison with historical data allows one to tell about the pronounced increase of the TCO2, TA, and Ca concentrations in the waters of Anadyr Bay and in the western part of the Chukchi Sea in the summer 2002. The processes that might have caused the changes observed are the enrichment of the estuarine waters in marine salts under the ice formation in winter and the decrease of the supply of the waters of the Bering Slope Current to the northwestern part of the Bering Sea.  相似文献   

5.
It is now widely accepted that the earth's climate is changing under the influence of anthropogenic activities. A number of key changes in the earths atmosphere and ocean have already been detected (including increasing global surface temperature, rising sea levels, increases in incident UV radiation, changes in average annual precipitation, and increases in the variability and intensity of extreme weather events, among others), while speculation regarding future changes is rife. The implications of global climate change for fish stocks and fisheries is of concern to many scientists, but little effort has been made to incorporate observed changes or event such thinking into management models and paradigms. This paper summarises available evidence linking the production of key greenhouse gases with observed and future projected changes in the earth's climate, specifically in respect of a number of key atmospheric and oceanographic parameters likely to affect fish stocks in South Africa (temperature, pressure/wind fields, CO2 concentration, rainfall, mean sea level and UV radiation). It also explores likely effects of these changes on fish stocks and key fishery sectors. In addition, it highlights a number of positive steps that be taken by management authorities to ensure that they and the fishing communities for which they are responsible are in the best possible position to deal with the effects of changing global climate as they become manifest.  相似文献   

6.
The role of coastal lagoons and estuaries as sources or sinks of inorganic carbon in upwelling areas has not been fully understood. During the months of May–July, 2005, we studied the dissolved inorganic carbon system in a coastal lagoon of northwestern Mexico during the strongest period of upwelling events. Along the bay, different scenarios were observed for the distributions of pH, dissolved inorganic carbon (DIC) and apparent oxygen utilization (AOU) as a result of different combinations of upwelling intensity and tidal amplitude. DIC concentrations in the outer part of the bay were controlled by mixing processes. At the inner part of the bay DIC was as low as 1800 μmol kg−1, most likely due to high water residence times and seagrass CO2 uptake. It is estimated that 85% of San Quintín Bay, at the oceanic end, acted as a source of CO2 to the atmosphere due to the inflow of CO2-rich upwelled waters from the neighboring ocean with high positive fluxes higher than 30 mmol C m−2 d−1. In contrast, there was a net uptake of CO2 and HCO3 by the seagrass bed Zostera marina in the inner part of the bay, so the pCO2 in this zone was below the equilibrium value and slightly negative CO2 fluxes of −6 mmol C m−2 d−1. Our positive NEP and ΔDIC values indicate that Bahía San Quintín was a net autotrophic system during the upwelling season during 2005.  相似文献   

7.
We examined the carbonate system, mainly the partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC) and total alkalinity (TAlk) in the Changjiang (Yangtze) River Estuary based on four field surveys conducted in Sep.–Oct. 2005, Dec. 2005, Jan. 2006 and Apr. 2006. Together with our reported pCO2 data collected in Aug.–Sep. 2003, this study provides, for the first time, a full seasonal coverage with regards to CO2 outgassing fluxes in this world major river–estuarine system. Surface pCO2 ranged 650–1440 μatm in the upper reach of the Changjiang River Estuary, 1000–4600 μatm in the Huangpujiang River, an urbanized and major tributary of the Changjiang downstream which was characterized by a very high respiration rate, and 200–1000 μatm in the estuarine mixing zone. Both DIC and TAlk overall behaved conservatively during the estuarine mixing, and the seasonal coverage of these carbonate parameters allowed us to estimate the annual DIC export flux from the Changjiang River as ∼ 1.54 × 1012 mol. The highly polluted Huangpujiang River appeared to have a significant impact on DIC, TAlk and pCO2 in the lower reaches of the inner estuary. CO2 emission flux from the main stream of the Changjiang Estuary was at a low level of 15.5–34.2 mol m− 2 yr− 1. Including the Huangpujiang River and the adjacent Shanghai inland waters, CO2 degassing flux from the Changjiang Estuary may have represented only 2.0%–4.6% of the DIC exported from the Changjiang River into the East China Sea.  相似文献   

8.
The interannual variations of CO2 sources and sinks in the surface waters of the Antarctic Ocean (south of 50°S) were studied between 1986 and 1994. An existing, slightly modified one-dimensional model describing the mixed-layer carbon cycle was used for this study and forced by available satellite-derived and climatological data. Between 1986 and 1994, the mean Antarctic Ocean CO2 uptake was 0.53 Pg C year−1 with an interannual variability of 0.15 Pg C year−1.Interannual variation of the Antarctic Ocean CO2 uptake is related to the Antarctic Circumpolar Wave (ACW), which affects sea surface temperature (SST), wind-speed and sea-ice extent. The CO2 uptake in the Antarctic Ocean has increased from 1986 to 1994 by 0.32 Pg C. It was found that over the 9 years, the surface ocean carbon dioxide fugacity (fCO2) increase was half that of the atmospheric CO2 increase inducing an increase of the air–sea fCO2 gradient. This effect is responsible for 60% of the Antarctic Ocean CO2 uptake increase between 1986 and 1994, as the ACW effect cancels out over the 9 years investigated.  相似文献   

9.
Primary production was studied at nine sites distributed within the Strait of Gibraltar (Southern Spain) and North-Western (NW) Alboran Sea by analyzing photosynthesis-irradiance (P–I) relationships and integrated primary production rates in relation to the different types of Deep Chlorophyll Maxima (DCM) detected in the area. The characteristics of the DCM were examined by several methods, including flow cytometry, quantification of transparent expolymer particles and fluorimetric measurements that were applied in order to assess the photo-physiological state of the phytoplankton assemblages with respect to their species composition and water column structure (hydrology). The photosynthetic parameters (derived from P–I relationships) and integrated primary production (range 6–644 mg m−2 d−1) responded greatly to the diverse DCM identified and thereby the spatial variability of the primary production observed in the region was found to depend upon the occurrence of the different types of phytoplankton accumulations, which were themselves indicative of the previous history of the water column. The net contribution of the primary production to the air–sea CO2 exchange process was also evaluated in the area. Results indicated that this region behaved as a net sink for the atmospheric CO2, with the intensity of the flux being strongly modulated by the wind intensity.  相似文献   

10.
A 3D coupled biogeochemical–hydrodynamic model (MIRO-CO2&CO) is implemented in the English Channel (ECH) and the Southern Bight of the North Sea (SBNS) to estimate the present-day spatio-temporal distribution of air–sea CO2 fluxes, surface water partial pressure of CO2 (pCO2) and other components of the carbonate system (pH, saturation state of calcite (Ωca) and of aragonite (Ωar)), and the main drivers of their variability. Over the 1994–2004 period, air–sea CO2 fluxes show significant inter-annual variability, with oscillations between net annual CO2 sinks and sources. The inter-annual variability of air–sea CO2 fluxes simulated in the SBNS is controlled primarily by river loads and changes of biological activities (net autotrophy in spring and early summer, and net heterotrophy in winter and autumn), while in areas less influenced by river inputs such as the ECH, the inter-annual variations of air–sea CO2 fluxes are mainly due to changes in sea surface temperature and in near-surface wind strength and direction. In the ECH, the decrease of pH, of Ωca and of Ωar follows the one expected from the increase of atmospheric CO2 (ocean acidification), but the decrease of these quantities in the SBNS during the considered time period is faster than the one expected from ocean acidification alone. This seems to be related to a general pattern of decreasing nutrient river loads and net ecosystem production (NEP) in the SBNS. Annually, the combined effect of carbon and nutrient loads leads to an increase of the sink of CO2 in the ECH and the SBNS, but the impact of the river loads varies spatially and is stronger in river plumes and nearshore waters than in offshore waters. The impact of organic and inorganic carbon (C) inputs is mainly confined to the coast and generates a source of CO2 to the atmosphere and low pH, of Ωca and of Ωar values in estuarine plumes, while the impact of nutrient loads, highest than the effect of C inputs in coastal nearshore waters, also propagates offshore and, by stimulating primary production, drives a sink of atmospheric CO2 and higher values of pH, of Ωca and of Ωar.  相似文献   

11.
Changes in the ventilation rate of the global ocean during the 20th and 21st centuries, as indicated by changes in the distribution of ideal age, are examined in a series of integrations of the Community Climate System Model version 3. The global mean age changes little in the 20th Century relative to pre-industrial conditions, but increases in the 21st Century, by an amount that is independent of the range of climate forcings considered. The increase is primarily due to a decrease in the ventilation rate of Antarctic Bottom Water (AABW), and to a lesser degree, North Atlantic Deep Water (NADW). Changes in a regional volumetric census of age indicate that the changes in AABW are predominantly for waters that are already older than 100 years, so will likely have a moderate direct feedback on oceanic uptake of CO2 and other tracers. On the other hand, the changes in NADW occur most strongly in waters that are a few decades old, so are more likely to have a feedback on the climate system. While the global mean age increases, the age does not increase everywhere in the ocean. Regions newly exposed to strong atmospheric forcing as sea ice retreats experience an increase in convection and decreasing age. Age also decreases over a large volume of the lower thermocline as the rate of upwelling of old deep water decreases with the weakening of the thermohaline circulation.  相似文献   

12.
Detection and attribution of hydrographic and biogeochemical changes in the deep ocean are challenging due to the small magnitude of their signals and to limitations in the accuracy of available data. However, there are indications that anthropogenic and climate change signals are starting to manifest at depth. The deep ocean below 2000 m comprises about 50% of the total ocean volume, and changes in the deep ocean should be followed over time to accurately assess the partitioning of anthropogenic carbon dioxide (CO2) between the ocean, terrestrial biosphere, and atmosphere. Here we determine the changes in the interior deep-water inorganic carbon content by a novel means that uses the partial pressure of CO2 measured at 20 °C, pCO2(20), along three meridional transects in the Atlantic and Pacific oceans. These changes are measured on decadal time scales using observations from the World Ocean Circulation Experiment (WOCE)/World Hydrographic Program (WHP) of the 1980s and 1990s and the CLIVAR/CO2 Repeat Hydrography Program of the past decade. The pCO2(20) values show a consistent increase in deep water over the time period. Changes in total dissolved inorganic carbon (DIC) content in the deep interior are not significant or consistent, as most of the signal is below the level of analytical uncertainty. Using an approximate relationship between pCO2(20) and DIC change, we infer DIC changes that are at the margin of detectability. However, when integrated on the basin scale, the increases range from 8–40% of the total specific water column changes over the past several decades. Patterns in chlorofluorocarbons (CFCs), along with output from an ocean model, suggest that the changes in pCO2(20) and DIC are of anthropogenic origin.  相似文献   

13.
The ocean is an important sink for carbon and heat, yet high-resolution measurements of biogeochemical properties relevant to global climate change are being made only sporadically in the ocean at present. There is a growing need for automated, real-time, long-term measurements of CO2 in the ocean using a network of sensors, strategically placed on ships, moorings, free-drifting buoys and autonomous remotely operated vehicles. The ground-truthing of new sensor technologies is a vital component of present and future efforts to monitor changes in the ocean carbon cycle and air–sea exchange of CO2.A comparison of a moored Carbon Interface Ocean Atmosphere (CARIOCA) buoy and shipboard fugacity of CO2 (fCO2) measurements was conducted in the western North Atlantic during two extended periods (>1 month) in 1997. The CARIOCA buoy was deployed on the Bermuda Testbed Mooring (BTM), which is located 5 km north of the site of the US Joint Global Ocean Flux Study (JGOFS) Bermuda Atlantic Time-series Study (BATS). The high frequency of sampling revealed that temperature and fCO2 responded to physical forcing by the atmosphere on timescales from diurnal to 4–8 days. Concurrent with the deployments of the CARIOCA buoy, frequent measurements of surface fCO2 were made from the R/V Weatherbird II during opportunistic visits to the BTM and BATS sites, providing a direct calibration of the CARIOCA buoy fCO2 data. Although, the in situ ground-truthing of the CARIOCA buoy was complicated by diurnal processes, sub-mesoscale and fine-scale variability, the CARIOCA buoy fCO2 data was accurate within 3±6 μatm of shipboard fCO2 data for periods up to 50 days. Longer-term assessments were not possible due to the CARIOCA buoy breaking free of the BTM and drifting into waters with different fCO2-temperature properties. Strategies are put forward for future calibration of other in situ sensors.  相似文献   

14.
The climate along the subtropical east coast of Australia is changing significantly. Rainfall has decreased by about 50 mm per decade and temperature increased by about 0.1 °C per decade during the last 50 years. These changes are likely to impact upon episodes of hypersalinity and the persistence of inverse circulations, which are often characteristic features of the coastal zone in the subtropics and are controlled by the balance between evaporation, precipitation, and freshwater discharge. In this study, observations and results from a general ocean circulation model are used to investigate how current climate trends have impacted upon the physical characteristics of the Hervey Bay, Australia. During the last two decades, mean precipitation in Hervey Bay deviates by 13% from the climatology (1941–2000). In the same time, the river discharge is reduced by 23%. In direct consequence, the frequency of hypersaline and inverse conditions has increased. Moreover, the salinity flux out of the bay has increased and the evaporation induced residual circulation has accelerated. Contrary to the drying trend, the occurrence of severe rainfalls, associated with floods, leads to short-term fluctuations in the salinity. These freshwater discharge events are used to estimate a typical response time for the bay.  相似文献   

15.
Traditional field techniques to monitor water quality in large estuaries, such as boat-based surveys and autonomous moored sensors, generally provide limited spatial coverage. Satellite imagery potentially can be used to address both of these limitations. Here, we show that satellite-based observations are useful for inferring total-suspended-solids (TSS) concentrations in estuarine areas. A spectra-matching optimization algorithm was used to estimate the particle backscattering coefficient at 400 nm, bbp(400), in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) satellite imagery. These estimated values of bbp(400) were compared to in situ measurements of TSS for the study period of September 1997–December 2003. Contemporaneous SeaWiFS bbp(400) values and TSS concentrations were positively correlated (N = 340, r2 = 0.4, P < 0.0005), and the satellite-derived bbp(400) values served as a reasonable first-order approximation for synoptically mapping TSS. Overall, large-scale patterns of SeaWiFS bbp(400) appeared to be consistent with expectations based on field observations and historical reports of TSS. Monthly averages indicated that SeaWiFS bbp(400) was typically largest in winter (>0.049 m−1, November–February) and smallest in summer (<0.031 m−1, June–August), regardless of the amount of riverine discharge to the bay. The study period also included Hurricanes Floyd and Isabel, which caused large-scale turbidity events and changes in the water quality of the bay. These results demonstrate that this technique can provide frequent synoptic assessments of suspended solids concentrations in Chesapeake Bay and other coastal regions.  相似文献   

16.
Partial pressure of CO2 (pCO2) in surface seawater has been measured in the northeastern Pacific Ocean at Station P and along Line P since 1973. These data have been divided into ‘oceanic’ and ‘coastal/transition’ zones, and the seasonal and interannual variability and the long-term trends for each zone have been examined. The oceanic zone shows little seasonality in surface seawater pCO2, with undersaturation throughout the year. A strong, biologically-driven seasonal cycle is offset by variation in temperature-dependent solubility of CO2. The coastal/transition zone shows a decline in pCO2 from winter–spring through summer and fall that is likely the result of seasonal stratification and convection rather than coastal upwelling. Interannual variability all along Line P is correlated with the multivariate ENSO index (MEI), with lower seawater pCO2 associated with El Niño conditions. Correlations with the Pacific Decadal Oscillation Index are similar but weaker, in part because there are few data prior to the 1976 regime shift. The long-term trend in seawater pCO2 in the oceanic zone is +1.36±0.16 μatm year?1, indistinguishable from the atmospheric growth rate, and varies little among the seasons. In the coastal/transition zone a slow increase in the pCO2 of surface seawater relative to that of the atmosphere has led to increasing undersaturation, particularly in spring. Aliasing of the seasonal and interannual variability due to sampling frequency may explain part of the observed trend in the coastal/transition zone, but real changes in physical or biological processes are also possible and require more detailed study.  相似文献   

17.
Strong seasonal patterns in upper ocean total carbon dioxide (TCO2), alkalinity (TA) and calculated pCO2 were observed in a time series of water column measurements collected at the US Joint Global Ocean Flux Study (JGOFS) BATS site (31 °50′N, 64 °10′W) in the Sargasso Sea. TA distribution was a conservative function of salinity. However, in February 1992, a non-conservative decrease in TA was observed, with maximum depletion of 25–30 μmoles kg−1 occuring in the surface layer and at the depth of the chlorophyll maximum (˜ 80–100 m). Mixed-layer TCO2 also decreased, while surface pCO2 increased by 25–30 μatm. We suggest these changes in carbon dioxide species resulted from open-ocean calcification by carbonate-secreting organisms rather than physical processes. Coccolithophore calcification is the most likely cause of this event although calcification by foraminifera or pteropods cannot be ruled out. Due to the transient increase in surface pCO2, the net annual transfer of CO2 into the ocean at BATS was reduced. These observations demonstrate the potential importance of open-ocean calcification and biological community structure in the biogeochemical cycling of carbon.  相似文献   

18.
Environmental transitions leading to spatial physical–chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low‐pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress‐related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an in situ and 96‐h experimental incubation under conditions of high pressure of CO2 (PCO2 1200 ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food‐rich but colder and corrosive estuary induced a traits trade‐off expressed as depressed IR under in situ conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher than those of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA‐associated conditions. Facing the environmental threat represented by the inter‐play between multiple drivers of climate change, this biological feature should be examined in detail as a potential tool for risk mitigation policies in coastal management arrangements.  相似文献   

19.
This paper presents results from a simulation of climate changes in the 19th–21st centuries with the Institute of Numerical Mathematics Climate Model Version 4 (INMCM4) in the framework of the Coupled Model Intercomparison Project, phase 5 (CMIP5). Like the previous INMCM3 version, this model has a low sensitivity of 4.0 K to a quadrupling of CO2 concentration. Global warming in the model by the end of the 21st century is 1.9 K for the RCP4.5 scenario and 3.4 K for RCP8.5. The spatial distribution of temperature and precipitation changes driven by the enhanced greenhouse effect is similar to that derived from the INMCM3 model data. In the INMCM4 model, however, the heat flux to the ocean and sea-level rise caused by thermal expansion are roughly 1.5 times as large as those in the INMCM3 model under the same scenario. A decrease in sea-ice extent and a change in heat fluxes and meridional circulation in the ocean under global warming, as well as some aspects of natural climate variability in the model, are considered.  相似文献   

20.
Global climate models have predicted a rise on mean sea level of between 0.18 m and 0.59 m by the end of the 21st Century, with high regional variability. The objectives of this study are to estimate sea level changes in the Bay of Biscay during this century, and to assess the impacts of any change on Basque coastal habitats and infrastructures. Hence, ocean temperature projections for three climate scenarios, provided by several atmosphere–ocean coupled general climate models, have been extracted for the Bay of Biscay; these are used to estimate thermosteric sea level variations. The results show that, from 2001 to 2099, sea level within the Bay of Biscay will increase by between 28.5 and 48.7 cm, as a result of regional thermal expansion and global ice-melting, under scenarios A1B and A2 of the Intergovernmental Panel on Climate Change. A high-resolution digital terrain model, extracted from LiDAR, data was used to evaluate the potential impact of the estimated sea level rise to 9 coastal and estuarine habitats: sandy beaches and muds, vegetated dunes, shingle beaches, sea cliffs and supralittoral rock, wetlands and saltmarshes, terrestrial habitats, artificial land, piers, and water surfaces. The projected sea level rise of 48.7 cm was added to the high tide level of the coast studied, to generate a flood risk map of the coastal and estuarine areas. The results indicate that 110.8 ha of the supralittoral area will be affected by the end of the 21st Century; these are concentrated within the estuaries, with terrestrial and artificial habitats being the most affected. Sandy beaches are expected to undergo mean shoreline retreats of between 25% and 40%, of their width. The risk assessment of the areas and habitats that will be affected, as a consequence of the sea level rise, is potentially useful for local management to adopt adaptation measures to global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号