首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.  相似文献   

2.
Recent studies in the Arkhangelsk region, northwest Russia, have identified at least three consecutive tills all associated with the last Valdaian (Weichselian) glaciation. The Scandinavian ice sheet deposited a Late Valdaian till (ca. 17 ka BP), whereas two tills were deposited in the Early–Middle Valdaian by the Barents/Kara Sea ice sheet (ca. 45–60 ka BP) and an older ice sheet with an eastern centre (ca. 74 ka BP). This article expands on previous stratigraphical work on the discrimination of regional till units by a combination of compositional characteristics and directional properties. Tills associated with the Scandinavian ice sheet were deposited by a glacier advancing from west or northwest, transporting predominantly material from the Fennoscandian shield and the White Sea area. The Barents/Kara Sea ice sheet moved from the north and northeast, whereas the oldest ice advance came from the east–southeast. Although, the two oldest tills both contain material with an eastern provenance, the Viryuga Till is dominated more by local carbonate-rich material. This study demonstrates that detailed investigation of till units facilitate the distinction of glacial events imperative for the reconstructing of the last glaciation in northern Russia.  相似文献   

3.
4.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   

5.
Ice-rafted debris (IRD) (>2 mm), input in eight sediment cores along the Eurasian continental margin (Arctic Ocean), have been studied over the last two glacial/interglacial cycles. Together with the revised chronologies and new micropaleontological data of two cores from the northern Barents Sea (PS2138) and northeastern Kara Sea (PS2741) spanning Marine Isotope Stages (MIS) 6 to 1, the IRD data give new insights into the glacial history of northern Eurasian ice-sheets over the last 150 ka. The chronologies of the cores are based on stable isotope records, AMS 14C datings, paleomagnetic and biostratigraphic data.Extensive episodes of northern Barents Sea ice-sheet growth, probably to the shelf edge, occurred during the late Weichselian (MIS 2) and the Saalian (MIS 6). Major IRD discharge at the MIS 4/3-transition hints to another severe glaciation, probably onto the outer shelf, during MIS 4. IRD-based instabilities of the marine-based ice margin along the northern Barents Sea between MIS 4 and 2 are similar in timing with North Atlantic Heinrich events and Nordic Seas IRD events, suggesting similar atmospheric cooling over a broad region or linkage of ice-sheet fluctuations through small sea-level events.In the relatively low-precipitation areas of eastern Eurasia, IRD peak values during Termination II and MIS 4/3-transition suggest a Kara Sea ice-sheet advance onto the outer shelf, probably to the shelf edge, during glacial MIS 6 and 4. This suggests that during the initial cooling following the interglacials MIS 5, and possibly MIS 7, the combined effect of sustained inflow of Atlantic water into the Arctic Ocean and penetration of moisture-bearing cyclones into easterly direction supported major ice build-up during Saalian (MIS 6) and Mid-Weichselian (MIS 4) glaciation. IRD peak values in MIS 5 indicate at least two advances of the Severnaya Semlya ice-sheet to the coast line during the Early Weichselian. In contrast, a distinct Kara Sea ice advance during the Late Weichselian (MIS 2) is not documented by the IRD records along the northeastern Kara Sea margin.  相似文献   

6.
Glaciations had a profound impact on the global sea-level and particularly on the Arctic environments. One of the key questions related to this topic is, how did the discharge of the Siberian Ob and Yenisei rivers interact with a proximal ice sheet? In order to answer this question high-resolution (1–12 kHz), shallow-penetration seismic profiles were collected on the passive continental margin of the Kara Sea Shelf to study the paleo-drainage pattern of the Ob and Yenisei rivers. Both rivers incised into the recent shelf, leaving filled and unfilled river channels and river canyons/valleys connecting to a complex paleo-drainage network.These channels have been subaerially formed during a regressive phase of the global sea-level during the Last Glacial Maximum. Beyond recent shelf depths of 120 m particle transport is manifested in submarine channel–levee complexes acting as conveyor for fluvial-derived fines. In the NE area, uniform draping sediments are observed. Major morphology determining factors are (1) sea-level fluctuations and (2) LGM ice sheet influence. Most individual channels show geometries typical for meandering rivers and appear to be an order of magnitude larger than recent channel profiles of gauge stations on land.The Yenisei paleo-channels have larger dimensions than the Ob examples and could be originated by additional water release during the melt of LGM Putoran ice masses.Asymmetrical submarine channel–levee complexes with channel depths of 60 m and more developed, in some places bordered by glacially dominated morphology, implying deflection by the LGM ice masses. A total of more than 12,000 km of acoustic profiles reveal no evidence for an ice-dammed lake of greater areal extent postulated by several workers. Furthermore, the existence of the channel–levee complexes is indicative of unhindered sediment flow to the north. Channels situated on the shelf above 120-m water depth exhibit no phases of ponding and or infill during sea-level lowstand. These findings denote the non-existence of an ice sheet on large areas of the Kara Sea shelf.  相似文献   

7.
Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1–6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C cm−2 ky−1. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.  相似文献   

8.
Pleistocene glaciolacustrine sediments of the Kleszczów Graben (the Be chatów outcrop, central Poland) record the origin, development, and decay of a glacial lake formed in the area of a subsiding basin during the advance of the Elsterian ice sheet. The sediments represent a transition from glaciofluvial to glaciolacustrine facies at the bottom part, and from glaciolacustrine to glacial facies at the top. The glaciolacustrine facies represent a few environments inside the lake basin, from the marginal sub-aqueous slope through the bottom part to the sub-aqueous fan. The contact of the glaciolacustrine facies and the overlying glacial till is erosional, and implies that a considerable part of the shallow-water lake facies was eroded.The lake existed for not longer than 600 years, but its development proceeded under the conditions of the Kleszczów Graben subsidence and the approach of the Elsterian ice sheet. Both factors influenced the sedimentation processes. The tectonic and climatic factors were recognised on the basis of facies analysis of lithofacies associations, and of their vertical and lateral changes.  相似文献   

9.
We present a mass balance model for Eurasia which is based on the calculation of accumulation from a moisture balance concept. The model is forced with 500 hPa temperatures from GCM time slices at LGM and present day. The model simulates key characteristics, such as control on the size of ice sheets through the advection of moisture, asymmetric ice sheets due to advection of moisture and orography, and the drying of ice sheets when they grow. A simulation of the Eurasian Ice Sheet through a full glacial cycle shows that the model reproduces realistic ice sheets that compare well with geomorphological data. During the Middle Weichselian and the Late Weichselian, the model picks up the trend that the Scandinavian part of the ice grows towards the south and east whilst the ice sheet covering the Barents and Kara Seas remains relatively stable. However, the model seriously underestimates the observed ice extent in the Baltic area. Uncertainties in the temperature and the wind field limit the reliability of regional modelling results.  相似文献   

10.
Seismic data combined with core analysis of the northwesternmost exploration well on the Norwegian continental margin, well 7316/5-1, has been used to map and discuss the genesis of three well-defined sand ridges. The sand ridges have a NE-SW to N-S orientation and are of Late Pliocene age. The dimensions of the ridges are: height 40 m, length 2–4 km and width 0.5–1 km.In relation to the glaciation models of the Barents Sea, the position of well 7316/5-1, and especially information from a core that penetrated one of the sand ridges, provide important information. The ridges are not, in themselves, diagnostic for grounded glaciers at the margin of the Barents Sea shelf during the Late Pliocene, although the presence of pebbles in a cored section of the ridges may represent ice-dropped material. Whether the possible influx of glaciogenic material is related to local or regional glaciations on the Barents Shelf remains to be evaluated.  相似文献   

11.
The Eurasian Weichselian glaciation is studied with the SICOPOLIS ice-sheet model and UKMO PMIP climate anomaly forcings. A set of sensitivity tests are completed, including runs in cold-ice mode, different positive-degree-day (PDD) factors and modified climatic data-sets. The model set-up with present-day climatology modified by a glacial index brings forth an areally correct Last Glacial Maximum (LGM) extent in the western areas, but the ice-sheet volume is too small compared to reconstructions from rebound rates. Applying modified climate data results in similar extent as indicated by the Quaternary Environment of the Eurasian North (QUEEN) Late Weichselian ice-sheet reconstruction. The simulation results display freshwater fluxes from melting and calving in phase with Heinrich events H3 at 27, H2 at 22, and H1 at 14 ka ago. These peaks correspond to fast flow areas, with main activity at 27 and 22 ka ago in the Nordic Channel area and later in the Bear Island and Storfjorden region. The activity of these areas seems to be shifting from south to north from LGM to the Holocene. The freshwater pulse at 19–18.5 ka could correspond to Dansgaard–Oeschger oscillation, as well as ice volume flux peaks around 18–17 ka ago on the western margin of the ice sheet.  相似文献   

12.
Uranium series dating has been carried out on secondary uranyl silicate minerals formed during sub-glacial and post-glacial weathering of Proterozoic uraninite ores in south west Finland. The samples were obtained from two sites adjacent to the Salpauselkä III ice marginal formation and cover a range of depths, from the surface to more than 60 m. Measured ages fall into three distinct groups, 70–100 ka, 28–36 ka and < 2500 yr. The youngest set is associated with surface exposures and the crystals display clear evidence of re-working. The most likely trigger for uranium release at depths below the surface weathering zone is intrusion of oxidising glacial melt water. The latter is often characterised by very high discharge rates along channels, which close once the overpressure generated at the ice margin is released. There is excellent correspondence between the two Finnish sites and published data for similar deposits over a large area of southern and central Sweden. None of the seventy samples analysed gave a U–Th age between 40 and 70 ka; a second hiatus is apparent at 20 ka, coinciding with the Last Glacial Maximum. Thus, the process responsible for uranyl silicate formation was halted for significant periods, owing to a change in geochemical conditions or the hydrogeological regime. These data support the presence of interstadial conditions during the Early and Middle Weichselian since in the absence of major climatic perturbations the uranium phases at depth are stable. When viewed in conjunction with proxy data from mammoth remains it would appear that the region was ice-free prior to the Last Glacial Maximum.  相似文献   

13.
There is a continuous record of planktonic foraminifers for oxygen isotope stages 50 to 26 (ca. 1.5–1.0 Ma) in the early Pleistocene Omma Formation near Kanazawa City, Central Japan, on the Sea of Japan coast. The warm-water species Globigerinoides ruber entered the Sea of Japan with the Tsushima Current during all interglacial periods and went locally extinct in the succeeding glacial periods. This implies that the marine climate of the Sea of Japan varied predominantly with the 41,000-year period of Earth's orbital obliquity. However, the relative abundances of G. ruber in marine isotope stages 47, 43 and 31 are significantly higher than those in other interglacial stages. These stages correspond to periods when eccentricity-modulated precession extremes were aligned with obliquity maxima. The Tsushima Current is a branch of the warm Kuroshio Current which is the strong northwestern component of the subtropical North Pacific Ocean gyre. Our data imply that the early Pleistocene climate in the northwestern Pacific was influenced not only by obliquity cycles but also by eccentricity cycles. This study also supports the climate model regarding eccentricity's role in the origin of low-frequency climate changes before the late Pleistocene ice ages.  相似文献   

14.
Subglacial lakes and jökulhlaups in Iceland   总被引:1,自引:0,他引:1  
Active volcanoes and hydrothermal systems underlie ice caps in Iceland. Glacier–volcano interactions produce meltwater that either drains toward the glacier margin or accumulates in subglacial lakes. Accumulated meltwater drains periodically in jökulhlaups from the subglacial lakes and occasionally during volcanic eruptions. The release of meltwater from glacial lakes can take place in two different mechanisms. Drainage can begin at pressures lower than the ice overburden in conduits that expand slowly due to melting of the ice walls by frictional and sensible heat in the water. Alternatively, the lake level rises until the ice dam is lifted and water pressure in excess of the ice overburden opens the waterways; the glacier is lifted along the flowpath to make space for the water. In this case, discharge rises faster than can be accommodated by melting of the conduits. Normally jökulhlaups do not lead to glacier surges but eruptions in ice-capped stratovolcanoes have caused rapid and extensive glacier sliding. Jökulhlaups from subglacial lakes may transport on the order of 107 tons of sediment per event but during violent volcanic eruptions, the sediment load has been 108 tons.  相似文献   

15.
A pollen record from the core sediments collected in the northern part of Lake Baikal represents the latest stage of the Taz (Saale) Glaciation, Kazantsevo (Eemian) Interglacial (namely the Last Interglacial), and the earliest stage of the Zyryanka (Weichselian) Glaciation. According to the palaeomagnetic-based age model applied to the core, the Last Interglacial in the Lake Baikal record lasted about 10.6 ky from 128 to 117.4 ky BP, being more or less synchronous with the Marine Isotope Stage 5e. The reconstructed changes in the south Siberian vegetation and climate are summarised as follows: a major spread of shrub alder (Alnus fruticosa) and shrub birches (Betula sect. Nanae/Fruticosae) in the study area was a characteristic feature during the late glacial phase of the Taz Glaciation. Boreal trees e.g. spruce (Picea obovata) and birch (Betula sect. Albae) started to play an important role in the regional vegetation with the onset of the interglacial conditions. Optimal conditions for Abies sibiricaP. obovata taiga development occurred ca. 126.3 ky BP. The maximum spread of birch forest-steppe communities took place at the low altitudes ca. 126.5–125.5 ky BP and Pinus sylvestris started to form forests in the northern Baikal area after ca. 124.4 ky BP. Re-expansion of the steppe communities, as well as shrubby alder and willow communities and the disappearance of forest vegetation occurred at about 117.4 ky BP, suggesting the end of the interglacial succession. The changes in the pollen assemblages recorded in the sediments from northern Baikal point to a certain instability of the interglacial climate. Three phases of climate deterioration have been distinguished: 126–125.5, 121.5–120, and 119.5–119 ky BP. The penultimate cooling signal may be correlated with the cool oscillation recorded in European pollen records. However, such far distant correlation requires more careful investigation.  相似文献   

16.
Ridge belts, composed of closely spaced individual ridges 5–20 km wide, form sinuous patterns 30–400 km wide and 200–2000 km long in the plains of northern Venus. They are not homogeneously distributed, but occur primarily in two regions: between 0 ° E and 90 ° E ridge belts are associated with large blocks of tessera, and have a cumulative length of about 13,200 km; and between 150 ° E and 250 ° E, the ridge belts form a fan-shaped pattern and have a total cumulative length of about 25,800 km. Most ridge belts trend within 10 ° of N-S. Five morphologic components exist within the ridge belts: (1) broad ridges, which have no sharp crest and usually occur individually in the plains: (2) discontinuous ridges, with short ridge segments less than 20 km long; (3) paired ridges, with closely spaced ridges (less than 10 km apart) that never merge; (4) parallel ridges, with widely spaced (10–50 km), less prominent ridges; and (5) anastomosing ridges, in which ridges splay at angles up to 30 °. Subtle cross-strike lineaments cut the ridge belts at angles of 30–90 ° to the ridge belt, and augen-shaped plains are often present in anastomosing ridges. We examine the relationships between the components, plains, cross-strike lineaments, and augen-shaped plains in five ridge belts. Broad arches similar to the arches associated with wrinkle ridges on the Moon, Mars and Mercury appear in all of the ridge belts examined. Through studying each of these components individually and in the context of five specific ridge belts, we conclude that these ridge belts formed by compressional forces. The ridge belts form a continuum of deformation, from the simple broad arches (Nephele Dorsa), representing small amounts of shortening, through asymmetric ridge belts in the plains (Pandrosa Dorsa) and adjacent to tessera (Kamari Dorsa), to ridge belts in troughs representing underthrusting (Ausra and Lukelong Dorsa). Underthrusting is also observed along the borders of Lakshmi Planum, associated with Freyja and Danu Montes.The interpreted compressional origins for the ridge belt components suggests that many of the other ridge belts are of compressional origin, although complex origins (involving a combination of extension, shear, and/or compression) for some ridge belts cannot be ruled out. Global high resolution data from the Magellan mission will permit global mapping of the characteristics and distribution of ridge belts and allow further tests for their origin and evolution.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci., Moscow), James W. Head (Brown University, Providence). Gordon H. Pettengill (MIT. Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

17.
Glacial bedform patterns and sediments deposited by the temperate and polythermal Late Devensian ice sheet in north-central Ireland record changes in the processes, location, and magnitude of subglacial meltwater throughout the last full glacial cycle (21–14 14C kyear BP). Meltwater characteristics are related directly to basal ice thermal regime and ice dynamics, including ice velocity and shifts in the location of ice centres. Therefore, reconstructed meltwater characteristics may provide insight into wider controls on dynamic ice behaviour. A range of meltwater-related features are present across north-central Ireland. These include tunnel valleys, drumlin leeside sequences, eskers, and boulder lags. Other bedforms including Rogen moraines were modified by meltwater activity along ice streams. Meltwater was stored subglacially in two contrasting regions located beneath or near ice centres in north-central Ireland. (1) The Lough Erne Basin is developed in a lowland depression occupied partly by subglacial Rogen moraine ridges which were formed around the time of the last glacial maximum. Meltwater was stored between Rogen ridge crests and released by hydraulic jacking associated with drumlinisation (16.6 14C kyear BP) and ice streaming (13.8 14C kyear BP). (2) The Lough Neagh Basin occupies a similar lowland depression and was the location of an ice sheet centre throughout the last glacial cycle. No bedforms are present beneath or immediately surrounding Lough Neagh. A larger, more continuous meltwater lake existed in the Lough Neagh depression, probably sealed by a region of cold-based ice outside lake margins. Water escaped through regional-scale tunnel valleys, particularly the Poyntzpass channel which was active during the Carlingford ice readvance (Killard Stadial, correlated with Heinrich event 1 at 14.5 14C kyear BP). Overall, reconstructed subglacial lake characteristics and drainage mechanisms are related closely to basal ice thermal regime and substrate relief (controlling lake geometry), and provide insight into controls on overall ice sheet dynamics.  相似文献   

18.
Paleoceanographic changes since the Late Weichselian have been studied in three sediment cores raised from shelf depressions along a north–south transect across the central Barents Sea. AMS radiocarbon dating offers a resolution of several hundred years for the Holocene. The results of lithological and micropaleontological study reveal the response of the Barents Sea to global climatic changes and Atlantic water inflow. Four evolutionary stages were distinguished. The older sediments are moraine deposits. The destruction of the Barents Sea ice sheet during the beginning of the deglaciation in response to climate warming and sea level rise resulted in proximal glaciomarine sedimentation. Then, the retreat of the glacier front to archipelagoes during the main phase of deglaciation caused meltwater discharge and restricted iceberg calving. Fine-grained distal glaciomarine sediments were deposited from periodic near-bottom nepheloid flows and the area was almost permanently covered with sea ice. The dramatic change in paleoenvironment occurred near the Pleistocene/Holocene boundary when normal marine conditions ultimately established resulting in a sharp increase of biological productivity. This event was diachronous and started prior to 10 14C ka BP in the southern and about 9.2 14C ka in the northern Barents Sea. Variations in sediment supply, paleoproductivity, sea-ice conditions, and Atlantic water inflow controlled paleoenvironmental changes during the Holocene.  相似文献   

19.
A digital 3D-reconstruction of the Baltic Ice Lake's (BIL) configuration during the termination of the Younger Dryas cold phase (ca. 11 700 cal. yr BP) was compiled using a combined bathymetric–topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The bathymetric–topographic DTM, assembled from publicly available data sets, has a resolution of 500 × 500 m on Lambert Azimuthal Equal Area projection allowing area and volume calculations of the BIL to be made with an unprecedented accuracy. When the damming Scandinavian ice sheet margin eventually retreated north of Mount Billingen, the high point in terrain of Southern central Sweden bordering to lower terrain further to the north, the BIL was catastrophically drained resulting in a 25 m drop of the lake level. With our digital reconstruction, we estimate that approximately 7800 km3 of water drained during this event and that the ice dammed lake area was reduced by ca. 18%. Building on previous results suggesting drainage over 1 to 2 years, our lake volume calculations imply that the freshwater flux to the contemporaneous sea in the west was between about 0.12 and 0.25 Sv. The BIL reconstruction provides new detailed information on the paleogeography in the area of southern Scandinavia, both before and after the drainage event, with implications for interpretations of geological records concerning the post-glacial environmental development.  相似文献   

20.
Most of the East European Craton lacks surface relief; however, the amplitude of topography at the top of the basement exceeds 20 km, the amplitude of topography undulations at the crustal base reaches almost 30 km with an amazing amplitude of ca. 50 km in variation in the thickness of the crystalline crust, and the amplitude of topography variations at the lithosphere–asthenosphere boundary exceeds 200 km. This paper examines the relative contributions of the crust, the subcrustal lithosphere, and the dynamic support of the sublithospheric mantle to maintain surface topography, using regional seismic data on the structure of the crystalline crust and the sedimentary cover, and thermal and large-scale P- and S-wave seismic tomography data on the structure of the lithospheric mantle. For the Precambrian lithosphere, an analysis of Vp/Vs ratio at 100, 150, 200, and 250 km depths does not show any age-dependence, suggesting that while Vp/Vs ratio can be effectively used to outline the cratonic margins, it is not sensitive to compositional variations within the cratonic lithosphere.Statistical analysis of age-dependence of velocity, density, and thermal structure of the continental crust and subcrustal lithosphere in the study area (0–62E, 45–72N) allows to link lithospheric structure with the tectonic evolution of the region since the Archean. Crustal thickness decreases systematically with age from 42–44 km in regions older than 1.6 Ga to 37–40 km in the Paleozoic–Mesoproterozoic structures, and to ca. 31 km in the Meso-Cenozoic regions. However, the isostatic contribution of the crust to the surface topography of the East European Craton is almost independent of age (ca. 4.5 km) due to an interplay of age-dependent crustal and sedimentary thicknesses and lithospheric temperatures.On the contrary, the contribution of the subcrustal lithosphere to the surface topography strongly depends on the age, being slightly positive (+ 0.3 + 0.7 km) for the regions older than 1.6 Ga and negative (− 0.5–1 km) for younger structures. This leads to age-dependent variations in the residual topography, i.e. the topography which cannot be explained by the assumed thermal and density structure of the lithosphere, and which can (at least partly) originate from the dynamic component caused by the mantle flow. Positive dynamic topography at the cratonic margins, which exceeds 2 km in the Norwegian Caledonides and in the Urals, clearly links their on-going uplift with deep mantle processes. Negative residual topography beneath the Archean-Paleoproterozoic cratons (− 1–2 km) indicates either a smaller density deficit (ca. 0.9%) in their subcrustal lithosphere than predicted by global petrologic data on mantle-derived xenoliths or the presence of a strong convective downwelling in the mantle. Such mantle downflows can effectively divert heat from the lithospheric base, leading to a long-term survival of the Archean-Paleoproterozoic lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号