首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The surface structure of α-Fe2O3(0 0 0 1) was studied using crystal truncation rod (CTR) X-ray diffraction before and after reaction with aqueous Fe(II) at pH 5. The CTR results show the unreacted α-Fe2O3(0 0 0 1) surface consists of two chemically distinct structural domains: an O-layer terminated domain and a hydroxylated Fe-layer terminated domain. After exposing the α-Fe2O3(0 0 0 1) surface to aqueous Fe(II), the surface structure of both co-existing structural domains was modified due to adsorption of Fe at crystallographic lattice sites of the substrate, resulting in six-coordinated adsorbed Fe at the surface. The average Fe-O bond lengths of the adsorbed Fe are consistent with typical Fe(III)-O bond lengths (in octahedral coordination), providing evidence for the oxidation of Fe(II) to Fe(III) upon adsorption. These results highlight the important role of substrate surface structure in controlling Fe(II) adsorption. Furthermore, the molecular scale structural characterization of adsorbed Fe provides insight into the process of Fe(II) induced structural modification of hematite surfaces, which in turn aids in assessing the effective reactivity of hematite surfaces in Fe(II) rich environments.  相似文献   

3.
Deposits preserved on peaks in the southern Peruvian Andes are evidence for past glacial fluctuations and, therefore, serve as a record of both the timing and magnitude of past climate change. Moraines corresponding to the last major expansion of ice on Nevado Coropuna date to 20‐25 ka, during the last glacial maximum. We reconstructed the snowline at Coropuna for this period using a combined geomorphic‐numeric approach to provide a first‐order estimate of the magnitude of late‐Pleistocene climate change. Our reconstructions show that snowline was approximately 550‐770 m lower during the last glacial maximum than during the late Holocene maximum, which ended in the 19th century, and ~750 m lower than today. While these values are similar to data from nearby Nevado Solimana, reconstructions from the neighbouring peak of Nevado Firura reveal a smaller snowline depression, suggesting the glacial response to climate forcing in the tropics is strongly influenced by non‐climatic factors. These data constitute some of the first directly dated palaeo‐snowline data from the arid tropics and suggest that the magnitude of the last glaciation in at least parts of the tropical Andes was similar to late‐Pleistocene events at higher latitudes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Molecular dynamics simulations of water in contact with the (0 0 1) and (0 1 0) surfaces of orthoclase (KAlSi3O8) were carried out to investigate the structure and dynamics of the feldspar-water interface, contrast the intrinsic structural properties of the two surfaces, and provide a basis for future work on the diffusion of ions and molecules in microscopic mineral fractures. Electron density profiles were computed from the molecular dynamics trajectories and compared with those derived experimentally from high-resolution X-ray reflectivity measurements by Fenter and co-workers [Fenter P., Cheng L., Park C., Zhang H. and Sturchio N. C. (2003a) Structure of the orthoclase (0 0 1)- and (0 1 0)-water interfaces by high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta67, 4267-4275]. For each surface, three scenarios were considered whereby the interfacial species is potassium, water, or a hydronium ion. Excellent agreement was obtained for the (0 0 1) surface when potassium is the predominant interfacial species; however, some discrepancies in the position of the interfacial peaks were obtained for the (0 1 0) surface. The two surfaces showed similarities in the extent of water ordering at the interface, the activation energies for water and potassium desorption, and the adsorption localization of interfacial species. However, there are also important differences between the two surfaces in the coordination of a given adsorbed species, adsorption site densities, and the propensity for water molecules in surface cavities and those in the first hydration layer to coordinate to surface bridging oxygen atoms. These differences may have implications for the extent of dissolution in the low-pH regime since hydrolysis of Si(Al)OSi(Al) bonds is a major dissolution mechanism.  相似文献   

5.
In solution thermodynamics, and more recently in surface chemistry, it is well established that relationships can be found between the free energies of formation of aqueous or surface metal complexes and thermodynamic properties of the metal ions or ligands. Such systematic dependencies are commonly termed linear free energy relationships (LFER). A 2 site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) model has been used to model “in house” and literature sorption edge data for eleven elements: Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) to provide surface complexation constants for the strong sites on montmorillonite. Modelling a further 4 sets of sorption isotherms for Ni(II), Zn(II), Eu(III) and U(VI) provided complexation constants for the weak sites. The protolysis constants and site capacities derived for the 2SPNE SC/CE model in previous work were fixed in all of the calculations. Cation exchange was modelled simultaneously to provide selectivity coefficients. Good correlations between the logarithms of strong SKx−1 and weak W1Kx−1 site binding constants on montmorillonite and the logarithm of the aqueous hydrolysis constants OHKx were found which could be described by the following equations: Strong (≡SSOH) sites:
SlogKX−1=8.1±0.3+(0.90±0.02)logOHKX  相似文献   

6.
7.
This paper presents the study and palaeoecological analysis of fossil fish vertebrae of the Arbreda Cave (Serinyà, Girona), probably the most significant Catalan palaeolithic site. Morphological and radiographical studies were used to identify vertebrae to genus and, whenever possible, to species level. The taxa identified are: Anguilla anguilla, Barbussp., Leuciscussp., Rutilus sp., Salmo salar, Salmo trutta and Salmo sp. Species distribution at various archaeological levels provided palaeoecological data. There is a high proportion of Salmo trutta remains in the Upper Gravettian level and a sudden decrease of fossil fish bones in the Solutrean level with shouldered points. This decrease coincides with the period of lower temperatures of the Late Pleniglacial. Finally, the post-glacial terra rossa level is characterised by the absence of Salmo trutta remains. The presence of Salmo salar in Mediterranean sites has often been discussed. However, the dating of remains of this Atlantic species found in the Arbreda Cave makes it likely that these specimens were caught in Atlantic rivers on the northern Pyrennean slope and then transported to the area studied. © 1997 John Wiley and Sons, Ltd.  相似文献   

8.
The adsorption of five toxic metallic cations, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), onto montmorillonite was investigated as a function of pH and ionic strength and a two-site surface complexation model was used to predict the adsorption data. The results showed that in the lower pH range, 3∼6 for Cd, Cu, Ni and Zn, and 3∼4.5 for Pb, the adsorption was greatly affected by ionic strength, while in the higher pH range, the adsorption was not. In the lower pH range, the metallic cations were mainly bound through the formation of outer-sphere surface on the permanently charged basal surface sites (≡X), while in the higher pH range the adsorption occurred mainly on the variably charged edge sites (≡SOH) through the formation of inner-sphere surface complexes. Acid-base surface constants and metal binding constants for the two sites were optimized using FITEQL. The adsorption affinity of the five metallic cations to the permanently charged sites of montmorillonite was Pb > Cu > Ni ≈ Zn ≈ Cd, while that to the variable charged sites was Pb ? Cu > Zn > Cd > Ni.  相似文献   

9.
Loess accumulated on a Bull Lake outwash terrace of Marine Oxygen Isotope Stage 6 (MIS 6) age in southern Jackson Hole, Wyoming. The 9 m section displays eight intervals of loess deposition (Loess 1 to Loess 8, oldest), each followed by soil development. Our age-depth model is constrained by thermoluminescence, meteoric 10Be accumulation in soils, and cosmogenic 10Be surface exposure ages. We use particle size, geochemical, mineral-magnetic, and clay mineralogical data to interpret loess sources and pedogenesis. Deposition of MIS 6 loess was followed by a tripartite soil/thin loess complex (Soils 8, 7, and 6) apparently reflecting the large climatic oscillations of MIS 5. Soil 8 (MIS 5e) shows the strongest development. Loess 5 accumulated during a glacial interval (~ 76-69 ka; MIS 4) followed by soil development under conditions wetter and probably colder than present. Deposition of thick Loess 3 (~ 43-51 ka, MIS 3) was followed by soil development comparable with that observed in Soil 1. Loess 1 (MIS 2) accumulated during the Pinedale glaciation and was followed by development of Soil 1 under a semiarid climate. This record of alternating loess deposition and soil development is compatible with the history of Yellowstone vegetation and the glacial flour record from the Sierra Nevada.  相似文献   

10.
Organic matter (OM) in mineral-organic associations (MOAs) represents a large fraction of carbon in terrestrial ecosystems which is considered stable against biodegradation. To assess the role of MOAs in carbon cycling, there is a need to better understand (i) the time-dependent biogeochemical evolution of MOAs in soil, (ii) the effect of the mineral composition on the physico-chemical properties of attached OM, and (iii) the resulting consequences for the stabilization of OM. We studied the development of MOAs across a mineralogical soil gradient (0.3-4100 kyr) at the Hawaiian Islands that derived from basaltic tephra under comparable climatic and hydrological regimes. Mineral-organic associations were characterized using biomarker analyses of OM with chemolytic methods (lignin phenols, non-cellulosic carbohydrates) and wet chemical extractions, surface area/porosity measurements (N2 at 77 K and CO2 at 273 K), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results show that in the initial weathering stage (0.3 kyr), MOAs are mainly composed of primary, low-surface area minerals (olivine, pyroxene, feldspar) with small amounts of attached OM and lignin phenols but a large contribution of microbial-derived carbohydrates. As high-surface area, poorly crystalline (PC) minerals increase in abundance during the second weathering stage (20-400 kyr), the content of mineral-associated OM increased sharply, up to 290 mg C/g MOA, with lignin phenols being favored over carbohydrates in the association with minerals. In the third and final weathering stage (1400-4100 kyr), metastable PC phases transformed into well crystalline secondary Fe and Al (hydr)oxides and kaolin minerals that were associated with less OM overall, and depleted in both lignin and carbohydrate as a fraction of total OM. XPS, the N2 pore volume data and OM-mineral volumetric ratios suggest that, in contrast to the endmember sites where OM accumulated at the surfaces of larger mineral grains, topsoil MOAs of the 20-400-kyr sites are composed of a homogeneous admixture of small-sized PC minerals and OM, which originated from both adsorption and precipitation processes. The chemical composition of OM in surface-horizon MOAs, however, was largely controlled by the uniform source vegetation irrespective of the substrate age whereas in subsoil horizons, aromatic and carboxylic C correlated positively with oxalate-extractable Al and Si and CuCl2-extractable Al concentrations representing PC aluminosilicates and Al-organic complexes (r2 > 0.85). Additionally, XPS depth profiles suggest a zonal structure of sorbed OM with aromatic carbons being enriched in the proximity of mineral surfaces and amide carbons (peptides/proteins) being located in outer regions of MOAs. Albeit the mineralogical and compositional changes of OM, the rigidity of mineral-associated OM as analyzed by DSC changed little over time. A significantly reduced side chain mobility of sorbed OM was, however, observed in subsoil MOAs, which likely arose from stronger mineral-organic bindings. In conclusion, our study shows that the properties of soil MOAs change substantially over time with different mineral assemblages favoring the association of different types of OM, which is further accentuated by a vertical gradient of OM composition on mineral surfaces. Factors supporting the stabilization of sorbed OM were (i) the surface area and reactivity of minerals (primary or secondary crystalline minerals versus PC secondary minerals), (ii) the association of OM with micropores of PC minerals (via ‘sterically’ enhanced adsorption), (iii) the effective embedding of OM in ‘well mixed’ arrays with PC minerals and monomeric/polymeric metal species, (iv) the inherent stability of acidic aromatic OM components, and (iv) an impaired segmental mobility of sorbed OM, which might increase its stability against desorption and microbial utilization.  相似文献   

11.
Proton binding constants for the edge and basal surface sites of kaolinite were determined by batch titration experiments at 25 °C in the presence of 0.1 M, 0.01 M and 0.001 M solutions of NaNO3 and in the pH range 3-9. By optimizing the results of the titration experiments, the ratio of the edge sites to the basal surface sites was found to be 6:1. The adsorption of Cd(II), Cu(II), Ni(II), Zn(II) and Pb(II) onto kaolinite suspensions was investigated using batch adsorption experiments and results suggested that in the lower pH range the metallic cations were bound through non-specific ion exchange reactions on the permanently charged basal surface sites (X). Adsorption on these sites was greatly affected by ionic strength. With increasing pH, the variable charged edge sites (SOH) became the major adsorption sites and inner-sphere specifically adsorbed monodentate complexes were believed to be formed. The effect of ionic strength on the extent of adsorption of the metals on the variable charged edge sites was much less than those on the permanently charged sites. Two binding constants, log K(X2Me) and log K(SOMe), were calculated by optimizing these constants in the computer program FITEQL. A model combining non-specific ion exchange reactions and inner-sphere specific surface complexations was developed to predict the adsorption of heavy metals onto kaolinite in the studied pH range. Linear free energy relationships were found between the edge site binding constants and the first hydrolysis constants of the metals.  相似文献   

12.
Jarosite is an important mineral on Earth, and possibly on Mars, where it controls the mobility of iron, sulfate and potentially toxic metals. Atomistic simulations have been used to study the incorporation of Al3+, and the M2+ impurities Cd, Cu and Zn, in the (0 1 2) and (0 0 1) surfaces of jarosite. The calculations show that the incorporation of Al on an Fe site is favorable on all surfaces in which terminal Fe ions are exposed, and especially on the (0 0 1) [Fe3(OH)3]6+ surface. Incorporation of Cd, Cu or Zn on a K site balanced by a K vacancy is predicted to stabilize the surfaces, but calculated endothermic solution energies and the high degree of distortion of the surfaces following incorporation suggest that these substitutions will be limited. The calculations also suggest that incorporation of Cd, Cu and Zn on an Fe site balanced by an OH vacancy, or by coupled substitution on both K and Fe sites, is unfavorable, although this might be compensated for by growth of a new layer of jarosite or goethite, as predicted for bulk jarosite. The results of the simulations show that surface structure will exert an influence on uptake of impurities in the order Cu > Cd > Zn, with the most favorable surfaces for incorporation being (0 1 2) [KFe(OH)4]0 and (0 0 1) [Fe3(OH)3]6+.  相似文献   

13.
14.
15.
16.
Adsorption of Rb+ and Sr2+ at the orthoclase (0 0 1)-solution interface is probed with high-resolution X-ray reflectivity and resonant anomalous X-ray reflectivity. Specular X-ray reflectivity data for orthoclase in contact with 0.01 m RbCl solution at pH 5.5 reveal a systematic increase in electron density adjacent to the mineral surface with respect to that observed in contact with de-ionized water (DIW). Quantitative analysis indicates that Rb+ adsorbs at a height of 0.83 ± 0.03 Å with respect to the bulk K+ site with a nominal coverage of 0.72 ± 0.10 ions per surface unit mesh (55.7 Å2). These results are consistent with an ion-exchange reaction in which Rb+ occupies an inner-sphere adsorption (IS) site. In contrast, X-ray reflectivity data for orthoclase in contact with 0.01 m Sr(NO3)2 solution at pH 5.3 reveal few significant changes with respect to DIW. Resonant anomalous X-ray reflectivity was used to probe Sr2+ adsorption and to image its vertical distribution. This element-specific measurement reveals that Sr2+ adsorbs with a total coverage of 0.37 ± 0.02 ions per surface unit mesh, at a substantially larger height (3.28 ± 0.05 Å) than found for Rb+, and with a relatively broad density distribution (having a root-mean-square width of 1.88 ± 0.08 Å for a single-peak model), implying that Sr2+ adsorbs primarily as a fully-hydrated outer-sphere (OS), species. Comparison to a two-height model suggests that 13 ± 5% of the adsorbed Sr2+ may be present as an IS species. This partitioning implies a ∼5 kJ/mol difference in free energy between the IS and OS Sr2+ on orthoclase. Differences in the partitioning of Sr2+ between IS and OS species for orthoclase (0 0 1) and muscovite (0 0 1) suggest control by the geometry of the IS adsorption site. Results for the OS distribution are compared to predictions of the Poisson-Boltzmann equation in the strong coupling regime, which predicts an intrinsically narrow vertical diffuse ion distribution; the OS distribution might thus be thought of as the diffuse ion profile in the limit of high surface charge.  相似文献   

17.
Recent advances in the chronology and the palaeoclimatic understanding of Antarctic ice core records point towards a larger heterogeneity of latitudinal climate fluctuations than previously thought. Thus, realistic palaeoclimate reconstructions rely in the development of a tight array of well‐constrained records with a dense latitudinal coverage. Climatic records from southernmost South America are critical cornerstones to link these Antarctic palaeoclimatic archives with their South American counterparts. At 54° S on the Island of Tierra del Fuego, Lago Fagnano is located in one of the most substantially and extensively glaciated regions of southernmost South America during the Late Pleistocene. This elongated lake is the largest (~110 km long) and non‐ice covered lake at high southern latitudes. A multi‐proxy study of selected cores allows the characterisation of a Holocene sedimentary record. Detailed petrophysical, sedimentological and geochemical studies of a complete lacustrine laminated sequence reveal variations in major and trace elements, as well as organic content, suggesting high variability in environmental conditions. Comparison of these results with other regional records allows the identification of major known late Holocene climatic intervals and the proposal for a time for the onset of the Southern Westerlies in Tierra del Fuego. These results improve our understanding of the forcing mechanisms behind climate change in southernmost Patagonia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Density-functional electronic structure calculations are used to compute the equilibrium constants for 26Mg/24Mg and 44Ca/40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 103ln (K) at 25 °C, of −5.3, −1.1, and +1.2 for 26Mg/24Mg exchange between calcite (CaCO3), magnesite (MgCO3), and dolomite (Ca0.5Mg0.5CO3), respectively, and Mg2+(aq), with positive values indicating enrichment of the heavy isotope in the mineral phase. For 44Ca/40Ca exchange between calcite and Ca2+(aq) at 25 °C, the calculations predict values of +1.5 for Ca2+(aq) in 6-fold coordination and +4.1 for Ca2+(aq) in 7-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as and embedded in a set of fixed atoms representing the second-shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe3+-hematite and Fe2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe3+(aq) and Fe2+(aq) species.  相似文献   

19.
Adsorption of Cu2+, Zn2+, Cd2+, and Pb2+ onto goethite is enhanced in the presence of sulfate. This effect, which has also been observed on ferrihydrite, is not predicted by the diffuse layer model (DLM) using adsorption constants derived from single sorbate systems. However, by including ternary surface complexes with the stoichiometry FeOHMSO4, where FeOH is a surface adsorption site and M2+ is a cation, the effect of SO42− on cation adsorption was accurately predicted for the range of cation, goethite and SO42− concentrations studied. While the DLM does not provide direct molecular scale insights into adsorption reactions there are several properties of ternary complexes that are evident from examining trends in their formation constants. There is a linear relationship between ternary complex formation constants and cation adsorption constants, which is consistent with previous spectroscopic evidence indicating ternary complexes involve cation binding to the oxide surface. Comparing the data from this work to previous studies on ferrihydrite suggests that ternary complex formation on ferrihydrite involves complexes with the same or similar structure as those observed on goethite. In addition, it is evident that ternary complex formation constants are larger where there is a stronger metal-ligand interaction. This is also consistent with spectroscopic studies of goethite-M2+-SO42− and phthalate systems showing surface species with metal-ligand bonding. Recommended values of ternary complex formation constants for use in SO4-rich environments, such as acid mine drainage, are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号