首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Soil erosion by water is a significant problem in arid and semi-arid areas of large parts of Iran. Water erosion is one of the most effective phenomena that leads to decreasing soil productivity and pollution of water resources; especially, in the Mazayjan watershed in the southwest of Fars Province gully erosion contributes to the sediment dynamics in a significant way. Consequently, the intention of this research is to identify the different types of soil erosion processes acting in the area and to assess the process dynamics in an integrative way. Therefore, we applied GIS and satellite image analysis techniques to derive input information for the numeric models. For sheet and rill erosion the Unit Stream Power-based Erosion Deposition Model (USPED) was utilized. The spatial distribution of gully erosion was assessed using a statistical approach, which used three variables (stream power index, slope, and flow accumulation) to predict the spatial distribution of gullies in the study area. The eroded gully volumes were estimated for a 7-year period by fieldwork and Google Earth high-resolution images. Finally the gully retreat rates were integrated into the USPED model. The results show that the integration of the SPI approach to quantify gully erosion with the USPED model is a suitable method to qualitatively and quantitatively assess water erosion processes. The application of GIS and stochastic model approaches to spatialize the USPED model input yields valuable results for the prediction of soil erosion in the Mazayjan catchment. The results of this research help to develop an appropriate management of soil and water resources in the southwestern parts of Iran.  相似文献   

2.
The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are responsible for initiation and development of ephemeral gullies.As the topographic features of an area significantly influences on the erosive power of the water flow,it is an important task the extraction of terrain features from DEM to properly research gully erosion.Alongside,topography is highly correlated with other geo-environmental factors i.e.geology,climate,soil types,vegetation density and floristic composition,runoff generation,which ultimately influences on gully occurrences.Therefore,terrain morphometric attributes derived from DEM data are used in spatial prediction of gully erosion susceptibility(GES)mapping.In this study,remote sensing-Geographic information system(GIS)tech-niques coupled with machine learning(ML)methods has been used for GES mapping in the parts of Semnan province,Iran.Current research focuses on the comparison of predicted GES result by using three types of DEM i.e.Advanced Land Observation satellite(ALOS),ALOS World 3D-30 m(AW3D30)and Advanced Space borne Thermal Emission and Reflection Radiometer(ASTER)in different resolutions.For further progress of our research work,here we have used thirteen suitable geo-environmental gully erosion conditioning factors(GECFs)based on the multi-collinearity analysis.ML methods of conditional inference forests(Cforest),Cubist model and Elastic net model have been chosen for modelling GES accordingly.Variable's importance of GECFs was measured through sensitivity analysis and result show that elevation is the most important factor for occurrences of gullies in the three aforementioned ML methods(Cforest=21.4,Cubist=19.65 and Elastic net=17.08),followed by lithology and slope.Validation of the model's result was performed through area under curve(AUC)and other statistical indices.The validation result of AUC has shown that Cforest is the most appropriate model for predicting the GES assessment in three different DEMs(AUC value of Cforest in ALOS DEM is 0.994,AW3D30 DEM is 0.989 and ASTER DEM is 0.982)used in this study,followed by elastic net and cubist model.The output result of GES maps will be used by decision-makers for sustainable development of degraded land in this study area.  相似文献   

3.
Hillslope Topography from Unconstrained Photographs   总被引:1,自引:0,他引:1  
Quantifications of Earth surface topography are essential for modeling the connections between physical and chemical processes of erosion and the shape of the landscape. Enormous investments are made in developing and testing process-based landscape evolution models. These models may never be applied to real topography because of the difficulties in obtaining high-resolution (1–2 m) topographic data in the form of digital elevation models (DEMs). Here we present a simple methodology to extract the high-resolution three-dimensional topographic surface from photographs taken with a hand-held camera with no constraints imposed on the camera positions or field survey. This technique requires only the selection of corresponding points in three or more photographs. From these corresponding points the unknown camera positions and surface topography are simultaneously estimated. We compare results from surface reconstructions estimated from high-resolution survey data from field sites in the Oregon Coast Range and northern California to verify our technique. Our most rigorous test of the algorithms presented here is from the soil-mantled hillslopes of the Santa Cruz marine terrace sequence. Results from three unconstrained photographs yield an estimated surface, with errors on the order of 1 m, that compares well with high-resolution GPS survey data and can be used as an input DEM in process-based landscape evolution modeling.  相似文献   

4.
This work summarizes the results of a geomorphological and bivariate statistical approach to gully erosion susceptibility mapping in the Turbolo stream catchment (northern Calabria, Italy). An inventory map of gully erosion landforms of the area has been obtained by detailed field survey and air photograph interpretation. Lithology, land use, slope, aspect, plan curvature, stream power index, topographical wetness index and length-slope factor were assumed as gully erosion predisposing factors. In order to estimate and validate gully erosion susceptibility, the mapped gully areas were divided in two groups using a random partitions strategy. One group (training set) was used to prepare the susceptibility map, using a bivariate statistical analysis (Information Value method) in GIS environment, while the second group (validation set) to validate the susceptibility map, using the success and prediction rate curves. The validation results showed satisfactory agreement between the susceptibility map and the existing data on gully areas locations; therefore, over 88% of the gullies of the validation set are correctly classified falling in high and very high susceptibility areas. The susceptibility map, produced using a methodology that is easy to apply and to update, represents a useful tool for sustainable planning, conservation and protection of land from gully processes. Therefore, this methodology can be used to assess gully erosion susceptibility in other areas of Calabria, as well as in other regions, especially in the Mediterranean area, that have similar morphoclimatic features and sensitivity to concentrated erosion.  相似文献   

5.
Digital Elevation Model (DEM) is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE) model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT) and their increasing grid space (pixel size) from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet). Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level), before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.  相似文献   

6.
Soil erosion is a major environmental problem in arid and semi-arid areas. Although bioengineering is important in preventing soil erosion, plant architecture and mechanical properties in these areas are rarely studied. In this study, in order to evaluate the potential of native plants to reduce soil erosion in semi-arid regions, their above-ground (e.g., stem density, radius of the stem, etc.) and below-ground (e.g., root area ratio, root tensile strength, etc.) characteristics were measured in the field and laboratory. Five indicators, namely, stem density (SD), sediment obstruction potential (SOP), plant stiffness (MEI), relative soil detachment (RSD), and root cohesion (Cr), were taken into account. Each indicator was scored according to a five-point scale (0?=?low, 4?=?high), and then, the score of each indicator was represented on an ameba diagram. Finally, for understanding traits of plants and evaluating their potential to control rill and gully erosion, the area occupied by the ameba diagram was studied. The results indicated that the shrub Ziziphus spina-christi (MEI?=?108.35 N, RSD?=?0.398, Cr?=?8.34 kPa, SOP?=?0.097, and SD?=?0.00270) is a very suitable native plant species for controlling both the gully and rill erosion. In addition, Scariola orientalis is effective for sediment obstruction, but its low scores on the MEI and RSD indicators imply that it is not able to control gully development. Furthermore, Noaea mucronata, Platychaete glaucescens, Astragalus gummifer, Alhagi persarum, Lycium shawii, and Prosopis farcta have a distinct potential to reduce the rate of gully erosion. These results have wide applicability for adopting soil conservation measures to other semi-arid environments.  相似文献   

7.
南极数字高程模型(DEM)是南极冰盖研究的基础数据,目前国际通用的全南极DEM数据主要有JLB97 DEM、RAMPv2 DEM、ICESat DEM以及Bamber 1km DEM. 利用DEM对DEM验证的方式对四种DEM的精度进行比较分析. 结果表明:Bamber 1km DEM和ICESat DEM之间的高程差异最小,平均高程差小于1.8 m,二者均有较高的可靠性. RAMPv2 DEM与Bamber 1km DEM的高程差大于1.9 m,在81.5° S以南和坡度较大的区域,高程差异更为明显,高程可靠性较低. JLB97 DEM与上述三种DEM的偏差超过10 m,高程可靠性最低.  相似文献   

8.
格拉沟位于青海省内陆滩地,其形成演化反映了西北地区典型的水土流失过程。文章在收集大量野外资料的基础上,研究了格拉沟的形成演化机制,并对该沟道主要工程地质问题进行了探讨。分析认为,格拉沟形成演化是该地区特殊的内因外因共同作用的结果,基于此对其发育演化阶段进行了划分与预测。该沟主要工程地质问题为边坡稳定性、渗透稳定性、河流侵蚀等。其中边坡稳定性主要包括天然岸坡整体稳定性及崩塌、坠溜、滑塌等;渗透稳定性主要包括潜蚀与管涌;河流下切与溯源侵蚀则成为岸坡失稳破坏的重要诱发因素。探讨格拉沟形成演化机制及其主要工程地质问题,对于研究西北地区水土流失机理及其产生的环境问题具有一定的借鉴作用。  相似文献   

9.
基于ICESat数据的南极冰盖DEM插值方法比较及精度分析   总被引:1,自引:0,他引:1  
南极数字高程模型(DEM)是从事南极地学和环境变化研究的基础. 内插是建立数字高程模型的重要技术点, 插值方法有多种, 根据不同的适用情况, 不同的插值方法各有优劣. 利用克里格、 距离反权、 三角网剖分、 最小曲率以及移动平均5种插值方法分别建立南极冰盖小范围区域的DEM, 通过抽取部分观测数据作为验证值对各插值方法进行了比较. 结果表明: 克里格插值方法的可靠性最好, 稳定性最高. 然后, 利用克里格插值方法, 基于ICESat测高卫星的GLA12数据建立了南极冰盖的DEM. 由于南极大陆实测数据有限, 缺乏对DEM的检核. 为了分析所建DEM的可靠性, 利用中国南极内陆冰盖考察所采集的GPS实测数据, 对所建立的DEM进行了验证分析. 结果显示, DEM在坡度较缓的南极内陆冰盖区域精度较高, 符合度在3 m以内; 距离卫星轨道越近的区域精度越高, 可达到1 m 以内. 在坡度较大, 高程变化较为显著的区域如沿海地区, 精度较低, 差距最大的点超过40 m.  相似文献   

10.
数字高程模型预处理方法的研究进展   总被引:3,自引:0,他引:3  
数字高程模型(Digital Elevation Model,简称DEM)是地形表面形态属性的数字化表达,被广泛应用于流域水文模拟中河网水系的提取.从DEM直接提取的河网水系及相关的流域地理空间信息,是分布式水文模拟的地理信息平台.由于DEM中洼地和平坦区的存在会影响水流方向的确定和数字河网的正确提取.因此在河网自动提取过程中必须首先对DEM数据进行预处理.本文对国内外各种DEM预处理方法进行了归纳总结.将DEM数据预处理方法分为两大类:分步处理法,以及一体化处理法.分步处理法按处理对象又可分为洼地处理方法和平坦区处理方法两部分;而一体化处理法则采用迭代算法同时对洼地和平地进行处理.  相似文献   

11.
The BASINS model, developed by the United States EPA, is a popular simulation tool for predicting watershed responses, such as runoff, pollution exports, and water quality. It requires large amounts of data to set parameters. Many studies state that model input is a major source of model uncertainty. Thus, improvements to the quality and completeness of the data will improve the certainty of the model. The objective of this study is to discuss the effects of spatial data, including digital elevation models (DEMs) and spatial rainfall records, on predictions of runoff from the BASINS model. The result shows that both DEMs and rainfall data can significantly influence peak flow and runoff volume. Rainfall input has more influence on the curve shape of hydrograph than DEM resolution. DEM resolution can have more impact on peak flow predictions than rainfall input. Because the model uncertainties from DEMs and rainfall records influence each other, the prediction error does not always decrease when DEM resolution increases. The present results show that the BASINS model produces reliable answers in the case area when the grid size is less than 100 m × 100 m and the precipitation records from the Bihu Rainfall Station are correct and complete.  相似文献   

12.
Digital elevation models (DEMs) used in geospatial analysis like the simulation of geophysical flows, such as floods, landslides, and block and ash flows, differ in resolution, acquisition time and generation methodology, which results in varied representation of topographic features. This study investigates the effects of DEMs on the output of a granular flow model, TITAN2D by comparing the output using different DEMs to that obtained with a “true” representation of the terrain, which is considered to be that obtained by using TOPSAR 5 m data. Seven DEMs at four resolutions from four sources were used for Mammoth Mountain, California, a cumulodome volcano. TITAN2D was run for seven different locations of an eruption of a potential dome and two different collapse volumes. The resulting outputs were subsequently compared with TOPSAR 5 m output, and qualitative and statistical inferences were drawn. DEMs with different resolutions and sources generated different outputs that led to different flow maps. For moderate and smaller scale flows ( $\mathcal{O}(10^4)$ m3 $\mathcal{O}(10^5) \,\text{m}^3$ ), different representations can affect the computation of accurate footprint of the flow and fine DEM resolution is critical for correct characterization of these flows.  相似文献   

13.
In the Swiss National Park, debris flows are a frequent phenomenon and have repeatedly affected highways and hiking structures. In this study, we first investigated the main characteristics and dimensions of current debris flows by field work and empirical parameterization schemes. Additionally, we evaluated a topography-based flow-trajectory geographic information system model (MSF) and a flow-routing model (FLO-2D) in terms of debris flow-affected areas. Three generically different digital elevation models (DEM) with grid spacing of 25, 4, and 1 m were used in conjunction with the flow models. The evaluation of the DEM grid spacing shows that for both flow models the 25-m DEM can give an approximate estimation of the potential hazard zone. Four- and one-meter DEMs mostly confine the simulated debris flow to existing channels and are in accordance with observations of recent debris-flow events. The study shows that DEM quality and grid resolution are crucial for the resulting delineation of potentially affected areas and thus for hazard assessment and mapping.  相似文献   

14.
Su  Zhengan  Xiong  Donghong  Dong  Yifan  Yang  Dan  Zhang  Su  Zhang  Baojun  Zheng  Xueyong  Zhang  Jianhui  Shi  Liangtao 《Natural Hazards》2015,79(1):183-202

This study assessed temporal variation in soil erosion rates in response to energy consumption of flow (ΔE). It employed an in situ bank gully field flume experiment with upstream catchment areas with bare (BLG) or cultivated land (CLG) that drained down to bare gully headcuts. Water discharge treatments ranged from 30 to 120 L Min−1. Concentrated flow discharge clearly affected bank gully soil erosion rates. Excluding minimal discharge in the CLG upstream catchment area (30 L min−1), a declining power function trend (p ≤ 0.1) was observed with time in soil erosion rates for both BLG and CLG upstream catchment areas and downstream gully beds. Non-steady state soil erosion rates were observed after an abrupt collapse along the headcut slope after prolonged scouring treatments. However, as the experiment progressed, ΔE and energy consumption of flow per unit soil loss (ΔEu) exhibited a logarithmic growth trend (p < 0.1) at each BLG and CLG position. Although similar temporal trends in soil erosion and infiltration rates were observed, values clearly differed between BLG and CLG upstream catchment areas. Furthermore, Darcy–Weisbach friction factor (f) values in the CLG upstream catchment area were higher than the corresponding BLG area. In contrast to the BLG upstream catchment area, lower ΔEu and higher soil erosion rates were observed in the CLG upstream catchment area as a result of soil disturbances. This indicated that intensive land use changes accelerate soil erosion rates in upstream catchment areas of bank gullies and increase soil sediment transport to downstream gullies. Accordingly, reducing tillage disturbances and increasing vegetation cover in upstream catchment areas of bank gullies are essential in the dry-hot valley region of Southwest China.

  相似文献   

15.
The combination of wind measurements and remotely sensed geomorphometry indices provides a valuable resource in the study of desert landforms, because arduous desert environments are difficult to access. In this research, we couple wind data and geomorphometry to separate and classify different sand dunes in Kashan Erg in central Iran. Additionally, the effect of sand-fixing projects on sand dune morphology was assessed using geomorphometry indices (roughness, curvature, surface area, dune spacing and dune height). Results showed that a Digital Elevation Model of the National Cartographic Center of Iran (NCC DEM) with 10-m resolution and accuracy of 54% could discriminate geomorphometry parameters better than the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 30-m resolution and Shuttle Radar Topography Mission (SRTM) data with 90-m resolution and 45.2 and 1.6% accuracy, respectively. Low classification of SRTM DEM was associated with too many non-value points found in the DEM. Accuracy assessment of comparison ground control points revealed that ASTER DEM (RMSE = 4.25) has higher accuracy than SRTM and NCC DEMs in this region. Study of curvature showed that transverse and linear sand dunes were formed in concave topography rather than convex. Reduced slopes in fixed sand dunes were established due to wind erosion control projects. Measurements of dune height and spacing show that there is significant correlation in compound dunes (R 2 = 0.546), linear dunes (R 2 = 0.228) and fixed dunes (R 2 = 0.129). In general, the height of dunes in Kashan Erg increases from the margin of the field to the center of the field with a maximum height of 120 m in star dunes. Analysis of wind data showed that sand drift potential is in low-medium class in Kashan Erg. Linear sand dunes in Kashan Erg show that they are following a global trend in forming of these. Finally, established of geomorphometry method in dune classification will help researchers to identify priority of land management and performance assessment of sand dunes fixing projects in arid arduous environment.  相似文献   

16.
The development of satellite technology is rapidly increasing the evolution of remote sensing. Satellite images give extensive useful information about the land structure that is easily manageable in the process of generating true, high-speed information which allows the forecasting of future environmental and urban planning. Remote sensing comprises active and passive systems. Passive sensors detect natural radiation that is emitted or reflected by the object or surrounding area being observed. Active systems which produce their own electromagnetic energy and their main properties are their ability of collecting data in nearly all atmospheric conditions, day or night. These systems are frequently used to generate a digital elevation model (DEM) because they cover large areas. DEM supplies essential data for applications that are concerned with the Earth’s surface and DEMs derived from survey data are accurate but very expensive and time consuming to create. However, the use of satellite remote sensing to provide images to generate a DEM is considered to be an efficient method of obtaining data. Interferometric Synthetic Aperture Radar (InSAR) is a new geodetic technique for determining earth topography. InSAR measurements are highly dense and they only give information in Line of Sight of Radar. In the study, interferograms were produced from the InSAR images taken by ERS satellites in 1992 and 2007 and we developed the methods to generate a DEM using the InSAR technique and present the results relating to Kayseri Province in Turkey. The accuracy of the DEM derived from the InSAR technique is evaluated in comparison with a reference DEM generated from contours in a topographical map.  相似文献   

17.
The concept of sustainable development has gained wide acceptance in the fields of mining and environmental studies. Mining is a temporary activity, but its impact on the environment persists long after mine closure. The aim of this research is to investigate the effect of land-use change on the stability of the Agacli landslide, northern coastal part of the Istanbul (Turkey), spanning periods of mining, reclamation, and afforestation. Geological and geophysical surveys were performed to determine the effects of erosion on the landslide. To assess the possibility of water responsible for triggering a landslide–gully complex, the dynamic elastic parameters of the field are calculated. Field observations indicate that surface erosion and gully development have ceased in the afforested area; however, gullies in non-forested areas continue to increase in size and depth. Uncontrolled surface water and water from stock watering ponds have trigger erosion and rapid sedimentation of the landslide–gully complex, resulting in over-steepening and enhanced landslide activity on the flanks of the main slide.  相似文献   

18.
数字地形分析技术在分布式水文建模中的应用   总被引:18,自引:0,他引:18  
论述了在栅格数字高程模型(DEM)的基础上,利用数字地形分析技术来完成地形评价、河网指示、流域分割、子流域参数化等项工作的理论与方法。并结合江西潋水河流域的实际工作进行了详细的说明。研究结果表明,通过数字地形分析的方法,利用栅格DEM实现流域离散化并从中提取分布式水文模型所需要的输入参数是一种行之有效的手段。  相似文献   

19.
近年来一系列中高分辨率立体成像卫星传感器相继发射成功,如法国的SPOT卫星、日本的ASTER和ALOS卫星,它们除了具有获取多光谱遥感数据的能力外,还具有立体成像的功能。随着计算机图像处理技术和卫星遥感立体成像技术的不断发展,地质体及其地形地貌的三维图像生成及其可视化技术得到了迅速发展。本研究介绍了利用ER-M apper图像处理软件提供的三维图像生成及可视化技术,将ASTER卫星遥感数据生成的数字高程模型与多光谱图像信息有机融合,生成地质体三维可视化图像,再现地质体的三维空间特征,从而从整体上直观、综合地对活动地质构造及其构造地貌特征进行可视化分析研究。本研究重点介绍了ASTER三维可视化立体遥感图像在晚第四纪活动构造和第四纪火山地貌研究中的应用,并展示了在阿尔泰山富蕴断裂带、北天山独山子背斜带、东昆仑断裂带以及长白山天池火山的研究实例。  相似文献   

20.
Small-scale terrains on salt materials were surveyed with a Total Station and a series of digital elevation models (DEMs) constructed. Two sets of observations were made, eight months apart, during which the terrains underwent significant erosion. The difference in elevation shown by the DEMs, calculated by subtraction, is a measure of surface erosion of the salt terrains. The erosion rate was analysed with respect to four terrain parameters calculated in the software. High erosion rates, and their strong control by terrain slope, are demonstrated, supporting an earlier study using erosion pins. Slope profile curvature is also indicated as having some influence. The combination of scanning Total Station and DEM software is shown to be an effective tool for investigating rapid geomorphic change at this scale of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号