首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper describes an approach to simulate a seven-tier stack consisting of scaled model of a 20 ft ISO freight container and its linking connectors, denominated twist locks, subjected to dynamical load induced by its base. The physical (dimensions, mass, and moments of inertia) and structural (longitudinal, transversal and torsional stiffness) characteristics of the scaled models were decided based on two dimensionless numbers: ratios between gravity force and inertia force, and elastic force divided by inertia force, through experimental and numerical analysis. A series of experiments with controlled parameters were performed using a shaking table test to understand the effects of each variable in the container stack dynamics and present enough data to validate the numerical model. The results of this study indicate that the numerical model built is a promising tool for further study. Moreover, the model is able to predict conditions close to real situations faced by container stacks while storage on a ship's deck.  相似文献   

2.
By means of Lagrange's equation, the “coupled” equations of motion for a horizontal plate carrying a U-type tuned liquid damper (TLD) are derived. The “uncoupled” equations of motion for the liquid (in the TLD) and the structural system are then obtained by decoupling the “coupled” ones. Unlike the existing literature to indirectly determine the natural frequencies of a damped vibrating system by using the resonant method, the “complex” eigenvalues of the coupled damped system are obtained directly from the associated eigenvalue equations. Besides, the pressure intensities in the two air chambers and the sizes of the two vertical tanks together with the horizontal conduit are arbitrary in the formulation of this paper. The influence of some key parameters of the TLD on the dynamic responses of the structural system is studied.  相似文献   

3.
利用深液TLD装置减小结构振动的研究   总被引:1,自引:1,他引:1  
本文通过分析TLD装置对结构的作功及其与结构的相互作用情况,建立了描述TLD装置对结构起减振作用的分析方法。依据本文建立的方法与概念,可将复杂的TLD装置与结构系统的相互作用研究、分析简化为:首先孤立研究TLD装置的性能,而后再与结构系统装配进行整体分析。最后,用试验测得的数据检验、印证了本文的分析方法  相似文献   

4.
针对矩形容器内液体晃荡问题,采用了时域高阶边界元方法建立自由水面满足完全非线性边界条件的数学模型。求解中采用混合欧拉-拉格朗日方法追踪流体瞬时水面,运用四阶龙格库塔方法更新下一时间步的波面和速度势。通过将计算得到的波面结果与实验数据、解析解和已发表结果对比,吻合良好,验证了本方法的准确性。进而采用谱分析方法分析了波面时间历程,得到容器各阶固有频率对液体晃荡的影响。研究发现,基频对液体晃荡的影响最大,且非线性越强,更高阶容器固有频率的影响越大。  相似文献   

5.
《Ocean Engineering》2007,34(5-6):645-652
Although International Maritime Organization (IMO) has taken many measures to minimize ship collisions, ships carrying liquid cargo sometimes do get struck by other vessels. The outflow of crude oil causes very serious consequences to the environment. In such cases it is necessary to analyze the response of structure of struck liquid cargo-filled tank to account for fluid–structure interaction accurately. In this paper, numerical simulation of collision between a container ship with double hull very large crude carrier (VLCC) is presented. Three different numerical simulation mothods were adopted to model fluid–structure interaction in liquid-filled cargo tank, namely arbitrary Lagrangian–Eulerian finite element method, Lagrangian finite element method and linear sloshing model. The numerical simulation results reveal that the fluid–structure interaction of liquid cargo-filled tank has a significant effect on the motion and structural response of the struck cargo tank. Compared with the calculation results of ALE FE method, the linear sloshing model underestimates the influence of fluid–structure interaction of liquid cargo tank while the Lagrangian–Eulerian finite element method may be considered as the practical method for engineering applications as it provided more reasonable results with a relatively low central processing unit (CPU) time.  相似文献   

6.
This study investigates the coupling effects of six degrees of freedom in ship motion with fluid oscillation inside a three-dimensional rectangular container using a novel time domain simulation scheme. During the time marching, the tank-sloshing algorithm is coupled with the vessel-motion algorithm so that the influence of tank sloshing on vessel motions and vice versa can be assessed. Several factors influencing the dynamic behavior of tank–liquid system due to moving ship are also investigated. These factors include container parameters, environmental settings such as the significant wave height, current velocity as well as the direction of wind, wave and flow current acting on the ship. The nonlinear sloshing is studied using a finite element model whereas nonlinear ship motion is simulated using a hybrid marine control system. Computed roll response is compared with the existing results, showing fair agreement. Although the two hull forms and the sea states are not identical, the numerical result shows the same trend of the roll motion when the anti-rolling tanks are considered. Thus, the numerical approach presented in this paper is expected to be very useful and realistic in evaluating the coupling effects of nonlinear sloshing and 6-DOF ship motion.  相似文献   

7.
集装箱船货舱区结构设计和强度评估研究   总被引:1,自引:0,他引:1  
基于NAPA Steel软件,实现某集装箱船货舱区的3D结构设计,并输出2D的CAD图纸.同时,在结构设计模型的基础上直接生成三舱段结构的初始有限元模型,参照CCS规范要求对模型进行修改完善后,应用MSC.Nastran软件对其进行了强度分析和屈曲计算,获得了该舱段结构强度的详细信息,并根据评估结果来完善结构设计.与传统的2D结构设计模式相比较,3D结构设计方法能有效地提高设计质量和效率.  相似文献   

8.
固定式海洋平台利用TLD的减震研究   总被引:7,自引:0,他引:7  
本文研究固定式海洋平台利用调谐液体阻尼器(TunedLiquidDamper,简称TLD)减小地震反应的方法。首先探讨了调谐频率比、激磁频率比对减震效果的影响,在此基础上建立了TLD——平台系统的力学模型和运动方程,通过数值计算验证了该方法的有效性  相似文献   

9.
Principal stress axes rotation influences the stress-strain behavior of sand under wave loading. A constitutive model for sand, which considers principal stress orientation and is based on generalized ...  相似文献   

10.
使用相似原理构建缩尺模型是探究大型结构性能的最基本和最优途径。基于PATRAN软件的PCL语言与ISIGHT软件,提出一种联合静动力学、拓扑优化与多目标优化的集装箱相似畸变模型构建方法。利用拓扑优化的SIMP法(Solid Isotropic Material with Penalization)得到缩尺集装箱墙壁结构的最优材料分布,既保证了结构性能又降低了缩尺模型的重量;基于全局多目标算法建立优化模型,采用有限元方法对集装箱性能进行分析,以结构刚度和一阶模态频率为目标函数进行寻优,得到相似模型的最优设计参数。最终利用有限元分析验证该模型的合理性。结果表明:该方法具有一定的通用性,能为其它类似结构的相似模型构建提供参考。  相似文献   

11.
Gao  Yun  Yang  Bin  Zou  Li  Zong  Zhi  Zhang  Zhuang-zhuang 《中国海洋工程》2019,33(1):44-56
A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder.  相似文献   

12.
Several long-term numerical experiments were conducted on simulating turbulent flow in a channel confined by two rough plates. Computations were based on a model that describes the dynamics of a three-dimensional incompressible fluid at very large Reynolds numbers. This model uses a localized dynamic mixed closure and a fourth-order-accurate conservative scheme. The results of the experiments are compared to the data of observations and direct numerical simulation. It is shown that an a posteriori reconstruction of the modeled velocity field leads to a close approximation of the statistical characteristics of the model solution to the statistical characteristics of the observed variability.  相似文献   

13.
This study contributes to solving the problem of how to derive a simplistic model feasible for describing dynamics of different types of ships for maneuvering simulation employed to study maritime traffic and furthermore to provide ship models for simulation-based engineering test-beds. The problem is first addressed with the modification and simplification of a complicated and nonlinearly coupling vectorial representation in 6 degrees of freedom (DOF) to a 3 DOF model in a simple form for simultaneously capturing surge motions and steering motions based on several pieces of reasonable assumptions. The created simple dynamic model is aiming to be useful for different types of ships only with minor modifications on the experiment setup. Another issue concerning the proposed problem is the estimation of parameters in the model through a suitable technique, which is investigated by using the system identification in combination with full-scale ship trail tests, e.g., standard zigzag maneuvers. To improve the global optimization ability of support vector regression algorithm (SVR) based identification method, the artificial bee colony algorithm (ABC) presenting superior optimization performance with the advantage of few control parameters is used to optimize and assign the particular settings for structural parameters of SVR. Afterward, the simulation study on identifying a simplified dynamic model for a large container ship verifies the effectiveness of the optimized identification method at the same time inspires special considerations on further simplification of the initially simplified dynamic model. Finally, the further simplified dynamic model is validated through not only the simulation study on a container ship but also the experimental study on an unmanned surface vessel so-called I-Nav-II vessel. Either simulation study results or experimental study results demonstrate a valid model in a simple form for describing the dynamics of different types’ ships and also validate the performance of the proposed parameter estimation method.  相似文献   

14.
By introducing continuous or discontinuous variations in the thickness of beams, arches and plates, it is possible in many practical situations to raise the value of the fundamental frequency and, at the same time, to lower the weight of the structural element. This is a beneficial situation, especially in those cases where weight reduction and large dynamic stiffness are of interest. The present paper surveys some recent practical accomplishments in this area.The rigorous procedure consists, from a general structural optimization viewpoint, of minimizing an objective function (for instance, total volume) subject to constraints on the geometry and behavior (natural frequencies, buckling loads, etc.). In many instances it is convenient to reverse the problem: one fixes or limits the weight or volume and constructs some quantity which describes the desired behavior of the system e.g. the fundamental frequency.The problems under study in the present paper are considerably more modest in scope, since the procedure is performed by numerical experiments.  相似文献   

15.
This paper describes a numerical approach to model the dynamic response of a pneumatic floating platform, and the laboratory experiments and parametric study to verify the numerical results. The pneumatic platform is composed of an array of open-bottom vertical cylinders trapping pressurized air that displaces the water. The cylinder diameter is assumed to be small compared to the wavelength and the water inside each cylinder oscillates as a piston. These assumptions simplify the mathematical formulation in that the bottom of the platform can be treated as a continuous surface on which the source distribution method can be applied. In the laboratory experiments, the compressibility and displacement of the trapped air are modeled by a spring and float assembly. The comparison between the numerical and experimental results indicates favorable agreement. The oscillation of the water columns and the overall dynamic characteristics of the platform are illustrated and discussed in the parametric study.  相似文献   

16.
Spar平台吸力式基础极限承载特性数值分析   总被引:2,自引:0,他引:2  
以国外某深海Spar平台工程为背景,针对其所采用的细长型吸力式基础的抗拔承载特性进行三维有限元数值分析.分析中充分考虑土体强度、加载位置和加载角度对吸力式基础极限抗拔承载力的影响,本构模型中钢筒基础采用弹塑性模型.分析结果表明,吸力式基础的极限抗拨承载力随着土体强度的增大而增大,倾斜加载时在基础插入土体部分中点左右加载可取得最大的极限承载力,极限抗拔承载力还随着加载角度的增大而增大.吸力式基础存在倾斜加载时桶基础与桶内外土体的共同塑性屈服破坏和垂直加载时桶外土体的局部剪切破坏等两种不同的破坏模式.  相似文献   

17.
针对大型浮式液化天然气储卸生产装置FLNG的液舱晃荡压力变化特征,在深水试验池中开展带液舱模型的FLNG水池模型试验研究。通过试验,获得了FLNG在风浪流联合作用下的浮体六自由度运动,以及相应的液面高度变化数据。通过液舱的液面高度变化数据,提出平液面假设,并在此基础上,求得液舱晃荡引起的舱壁压力变化结果。研究中进一步讨论了液舱晃荡压力的影响因素,并将试验数据与CCS船级社规范计算结果进行对比,为FLNG液舱晃荡压力引起的结构安全性评估提供技术支持。  相似文献   

18.
Real sea conditions are characterized by multidirectional sea waves. However, the prediction of hull load responses in oblique waves is a difficult problem due to numeral divergence. This paper focuses on the investigation of numerical and experimental methods of load responses of ultra-large vessels in oblique regular waves. A three dimensional nonlinear hydroelastic method is proposed. In order to numerically solve the divergence problem of time-domain motion equations in oblique waves, a proportional, integral and derivative (PID) autopilot model is applied. A tank model measurement methodology is used to conduct experiments for hydroelastic responses of a large container ship in oblique regular waves. To implement the tests, a segmented ship model and oblique wave testing system are designed and assembled. Then a series of tests corresponding to various wave headings are carried out to investigate the vibrational characteristics of the model. Finally, time-domain numerical simulations of the ship are carried out. The numerical analysis results by the presented method show good agreement with experimental results.  相似文献   

19.
For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength characteristics of ships with large hatch openings. The primary aim of the present study is to investigate the ultimate strength characteristics of ship hulls with large hatch openings under torsion. Axial (warping) as well as shear stresses are normally developed for thin-walled beams with open cross sections subjected to torsion. A procedure for calculating these stresses is briefly described. As an illustrative example, the distribution and magnitude of warping and shear stresses for a typical container vessel hull cross section under unit torsion is calculated by the procedure. By theoretical and numerical analyses, it is shown that the influence of torsion induced warping stresses on the ultimate hull girder bending strength is small for ductile hull materials while torsion induced shear stresses will of course reduce the ship hull ultimate bending moment.  相似文献   

20.
The paper describes results of numerical experiments on the simulation of a mesoscale quasi-tropical cyclone, a rare event for the Black Sea, with the MM5 regional atmospheric circulation model. General characteristics of the cyclone and its evolution and physical formation mechanisms are discussed. The balances of the momentum components have been estimated, and sensitivity experiments have been performed. It is shown that, according to its main physical properties and energy supply mechanisms, the cyclone can be related to quasi-tropical cyclones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号