首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
This paper aims to propose a quality profile of springs of the study area for irrigation. In the present study, fifty-four springs in Almora have been identified from rural as well as urban localities for calculation of irriga- tional water quality parameters during pre-monsoon, monsoon and post-monsoon, 2008. Spring water samples are collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), Na+ , K+ , Ca2+ , Mg2+ , HCO3- , Cl- , and SO42- . Different irrigation quality parameters viz. salinity, sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium hazards (MH) and permeability index (PI) are calculated for the evaluation of spring water quality for irrigation purposes. All springs are found excellent to good based on irrigation quality parameters. Based on Wilcox diagram, about 98% of the water resources are grouped as C1S1 (low-low) and C2S1 (medium-low) classes, so springs are suitable for normal irrigation.  相似文献   

2.
In India, the quantity and quality of water available for irrigation is variable from place to place. Assessment of water quality has been carried out to determine the sources of dissolved ions in groundwater. Quality of groundwater in a 398 km2 Peddavanka watershed of a semi-arid region of south India is evaluated for its suitability for drinking and irrigation purposes. The middle Proterozoic Cuddapah Supergroup and Kurnool Group of rocks underlie most of the watershed. The main lithologic units consist chiefly of quartzite, limestone, and shale. Seventy-six water samples were collected from open-wells and bore-holes. Water samples were collected representative of the post-monsoon (winter) and pre-monsoon (summer). The quality assessment is made through the estimation of Ca2+, Mg2+, Na+, K+, Cl, SO42−, CO32−, HCO3, total hardness as CaCO3, TDS, EC, and pH. Based on these analyses, parameters like sodium adsorption ratio, % sodium, residual sodium carbonate, non-carbonate hardness, potential salinity, Kelley’s ratio, magnesium ratio, index of base exchange and permeability index were calculated. According to Gibbs‘ ratio samples in both seasons fall in the rock dominance field. The overall quality of waters in the study area in post-monsoon season is high for all constituents ruling out pollution from extraneous sources.  相似文献   

3.
Precipitation, soil and spring waters from an outlier of Chalk were analysed over a one year period for field pH, and contents of Ca+2, Mg+2, HCO3? and other dissolved solids. Measured soil log PCO2 (atm) varied between a minimum of ?2.60 and maximum of ?1.46, and could be predicted from measurements of soil temperature. Soil waters evolved under open system conditions with respect to soil CO2, and were undersaturated with calcite during the winter recharge period.The chemistry of the springs is related to their topographic position. Group 1 springs, located below a feather edge of chalk, had both their minimum and maximum PCO2s predicted by the soil CO2 data, suggesting open system CO2 evolution. Group 2 springs, located along the scarp slope had minimum PCO2s predicted by the soil data, but maximum PCO2s which could only be explained by a closed system evolution from the maximum soil CO2 observed. Group 1 springs were close to calcite saturation, whereas Group 2 springs were significantly undersaturated with calcite. The two groups could be identified by linear discriminant analysis of measured Ca2+, pH and HCO3? concentrations.  相似文献   

4.
The relative contributions of dolomite to calcite weathering related to riverine fluxes are investigated on a highly resolved spatial scale in the diverse watersheds of Slovenia, which previous work has shown have some of the highest carbonate-weathering intensities in the world and suggests that dolomite weathering is favored over limestone weathering in mixed carbonate watersheds. The forested Sava and So?a River watersheds of Slovenia with their headwaters in the Julian Alps drain alpine regions with thin soils (<30 cm) and dinaric karst regions with thicker soils (0 to greater than 70 cm) all developed over bedded Mesozoic carbonates (limestone and dolomite), and siliclastic sediments is the ideal location for examining temperate zone carbonate weathering. This study extends previous work, presenting geochemical data on source springs and documenting downstream geochemical fluctuations within tributaries of the Sava and So?a Rivers. More refined sampling strategies of springs and discrete drainages permit directly linking the stream Mg2+/Ca2+ ratios to the local bedrock lithology and the HCO3 ? concentrations to the relative soil depths of the tributary drainages. Due to differences in carbonate source lithologies of springs and tributary streams, calcite and dolomite weathering end members can be identified. The Mg2+/Ca2+ ratio of the main channel of the Sava River indicates that the HCO3 ? concentration can be attributed to nearly equal proportions by mass of dolomite relative to calcite mineral weathering (e.g., Mg2+/Ca2+ mole ratio of 0.33). The HCO3 ? concentration and pCO2 values increase as soil thickness and alluvium increase for discrete spring samples, which are near equilibrium with respect to calcite. Typically, this results in approximately 1.5 meq/l increase in HCO3 ? from the alpine to the dinaric karst regions. Streams in general do not change in HCO3 ?, Mg2+/Ca2+, or Mg2+/HCO3 ? concentrations down course, but warming and degassing of CO2 produce high degrees of supersaturation with respect to calcite. Carbonate-weathering intensity (mmol/km2-s) is highest within the alpine regions where stream discharge values range widely to extreme values during spring snowmelt. Overall, the elemental fluxes of HCO3 ?, Ca2+, and Mg2+ from the tributary watersheds are proportional to the total water flux because carbonates dissolve rapidly to near equilibrium. Importantly, dolomite weathers preferentially over calcite except for pure limestone catchments.  相似文献   

5.
A 17-year record (1995–2012) of a suite of environmental tracer concentrations in discharge from 34 springs located along the crest of the Blue Ridge Mountains in Shenandoah National Park (SNP), Virginia, USA, reveals patterns and trends that can be related to climatic and environmental conditions. These data include a 12-year time series of monthly sampling at five springs, with measurements of temperature, specific conductance, pH, and discharge recorded at 30-min intervals. The monthly measurements include age tracers (CFC-11, CFC-12, CFC-113, CFC-13, SF6, and SF5CF3), dissolved gases (N2, O2, Ar, CO2, and CH4), stable isotopes of water, and major and trace inorganic constituents. The chlorofluorocarbon (CFC) and sulfur hexafluoride (SF6) concentrations (in pptv) in spring discharge closely follow the concurrent monthly measurements of their atmospheric mixing ratios measured at the Air Monitoring Station at Big Meadows, SNP, indicating waters 0–3 years in age. A 2-year (2001–2003) record of unsaturated zone air displayed seasonal deviations from North American Air of ±10 % for CFC-11 and CFC-113, with excess CFC-11 and CFC-113 in peak summer and depletion in peak winter. The pattern in unsaturated zone soil CFCs is a function of gas solubility in soil water and seasonal unsaturated zone temperatures. Using the increase in the SF6 atmospheric mixing ratio, the apparent (piston flow) SF6 age of the water varied seasonally between about 0 (modern) in January and up to 3 years in July–August. The SF6 concentration and concentrations of dissolved solutes (SiO2, Ca2+, Mg2+, Na+, Cl?, and HCO3 ?) in spring discharge demonstrate a fraction of recent recharge following large precipitation events. The output of solutes in the discharge of springs minus the input from atmospheric deposition per hectare of watershed area (mol ha?1 a?1) were approximately twofold greater in watersheds draining the regolith of Catoctin metabasalts than that of granitic gneisses and granitoid crystalline rocks. The stable isotopic composition of water in spring discharge broadly correlates with the Oceanic Niño Index. Below normal precipitation and enriched stable isotopic composition were observed during El Niño years.  相似文献   

6.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

7.
Soil losses and siltation of the hydrological system (watershed–dam) of K’sob were obtained using direct and indirect methods. The Wadi K’sob watershed of 1,484 km2, average slope of 0.14, and average elevation of 1,060 m is located in a semiarid climate. The average annual rainfall is 341 mm and the mean annual water discharge is 0.89 m3/s. Data from the Medjez gauging station located 6 km upstream of the dam, are the daily liquid flow and instantaneous concentrations of suspended sediments. Over a time period from 1973 to 2010, the relationship between water and sediment discharges is quantified by the equation: Q s?=?5.6 Q 1.31. Thus, in view of the availability data on a daily scale, the assessment of soil erodibility of the K’sob watershed was used to estimate specific soil losses of 203 t?km?2?year?1or 301,000 t eroded annually from the K’sob basin. The bathymetric measurements of the sediment volumes deposited in the K’sob dam, has quantified the annual siltation of 0.8 hm3, corresponding to an average erodibility of the K’sob watershed of 809 t?km?2?year?1. However, when adding the volume of sediment removed by the dredging operation and de-silting by the valves during heavy floods, the value of soil losses is 2,780 t?km?2?year?1. The indirect assessment of soil erodibility of the basin was obtained by applying two models: the quantitative geomorphological analysis (QGA) and PISA model (prediction of silting in the artificial reservoirs, in Italian: Previsioni dell’Interimento nei Serbatoi Artificiali) using physical and climatic factors in the watershed. The obtained results by QGA method underestimate specific soil losses of 524 t?km?2?year?1. The PISA model gives a value of 2,915 t?km?2?year?1, which is close to the value obtained by bathymetric measurements. This study concludes that PISA model is most suitable to estimate soil loss and siltation of the K’sob hydrological system.  相似文献   

8.
There are 59 springs at the Gevas–Gurp?nar–Güzelsu basins, 38 of these springs emerge from the fractured karst aquifers (recrystallized limestone and travertine) and 21 emerge from the Yuksekova ophiolites, K?rkgeçit formation and alluvium. The groundwater samples collected from 38 out of the total of 59 springs, two streams, one lake and 12 wells were analyzed physico-chemically in the year 2002. EC and TDS values of groundwater increased from the marble (high altitude) to the ophiolites and alluvium (toward Lake Van) as a result of carbonate dissolution and connate seawater. Five chemical types of groundwater are identified: Ca–Mg–HCO3, Mg–Ca–HCO3, Mg–Na–HCO3, Na–Ca–HCO3 and Mg–Ca–Na–HCO3. The calculations and hydrochemical interpretations show that the high concentrations of Ca2+, Mg2+ and HCO3 ? as predominant ions in the waters are mainly attributed to carbonate rocks and high pCO2 in soil. Most of the karst springs are oversaturated in calcite, aragonite and dolomite and undersaturated in gypsum, halite and anhydrite. The water–rock interaction processes that singly or in combination influence the chemical composition of each water type include dissolution of carbonate (calcite and dolomite), calcite precipitation, cation exchange and freshening of connate seawater. These processes contribute considerably to the concentration of major ions in the groundwater. Stable isotope contents of the groundwater suggest mainly direct integrative recharge.  相似文献   

9.
The Cananéia Lagoon estuarine system lies at 25°S, near the latitudinal limit for mangroves. It is 110 km long, consisting of 1–3 km wide channels behind a barrier island, with narrow inlets at the southern and northern ends. Average and maximum depths are 6 m and 12 m. The system is microtidal and subtropical. Mean annual temperature is 21.4°C (annual amplitude=7.0°C). When the area receives sporadic frosts, temperatures close to 2°C occur in the estuary. Annual precipitation (2,270 mm) exceeds annual potential evapotranspiration (1,656 mm). The water budget of the 1,339 km2 watershed is controlled primarily by local rainfall. Before 1978, a large river discharged a significant portion of its flow into the lagoon, but closure of the diversionary channel has since caused changes in salinity, phytoplankton populations, and mangrove coverage. About 90 km2 of intertidal habitat is occupied by mangroves and tidal marsh; mangroves are dominant. Fringe and riverine forests (dominated byRhizophora) are more structurally developed than the basins dominated byLaguncularia and have higher litterfall rates (2.08 g m?2 d?1, fringes; 1.04 g m?2d?1, basins). Primary production exhibits pronounced seasonal pulses; heterotrophic processes lag photosynthetic production and are partially driven by particulate matter inputs. Synthetic models must consider the spatial and temporal heterogeneity of this region.  相似文献   

10.
Discharge areas of carbonate fractured and karstified aquifers are a sensitive system of great interest, where frequently groundwater resources are tapped for drinking water supply. In geological settings affected by recent and/or active tectonics, mixing between fresh water coming from recharge areas and groundwater from deeper circuits, influenced by raising fluids, influences hydrogeochemistry. Surveys on major ions, trace elements and stable isotopes have been performed in the San Vittorino Plain (Central Italy), where the major source of drinking water for Rome is located (Peschiera Springs, mean discharge 18 m3 s?1, half of them tapped). Results of 21 springs revealed different contribution from recharge areas and deep flow paths, by increasing salinity and ion content, with particular references to Ca2+, HCO3 ? and SO4 2?. Three main groups, respectively, related to fresh waters from recharge areas, groundwater from deep contribution and a mixing group between them, have been identified. Water stable isotopes allow to identify the common origin from rainfall and a very steady contribution with seasons and year, due to the huge extent of recharge area (>1000 km2). Saturation Indexes gave insight on the contribution of deep fluids, mainly CO2 and H2S, which turned groundwater to undersaturated conditions, facilitating rock dissolution. By PHREEQC software, the mixing between two considered end-members has been simulated, evaluating about 25% of deep contribution in the basal springs of San Vittorino Plain. Chemistry of Peschiera spring reveals a very limited percentage of deep flow paths (10%), which can lead to slight hydrochemistry changes even in possible drought conditions, when discharge can decrease until 15 m3 s?1.  相似文献   

11.
Two springs (Cuihua Spring, Shuiqiuchi Spring) in Cuihua Mountain of the Qinling Mountains were observed and sampled monthly during 2004 and 2005 to trace their physical properties and chemical compositions with seasons. Although both pH values and cation (Ca2+, Mg2+, K+, and Na+) contents of Cuihua Spring are higher than those of Shuiqiuchi Spring, seasonal variations in both springs are obvious. The pH values of both spring waters are between 5.69 and 6.98, lower than that of rainwater during summer and autumn. From January to November, the pH values of both springs similarly vary from high to low and then to high again. Variations in electric conductivities of two spring waters are contrary, although their electric conductivities are positively correlative with the cation content respectively. This can be attributed to different water sources of the two springs or different acidic rocks they passed. The contents of HCO3 , Ca2+, Mg2+, K+, and Na+ are low, indicating a low silicate weathering that the strata in this district are mainly composed of granite and schist of quartz and mica. Differing from change in spring water in karst regions of South China where abundant precipitation and dilution of rainwater cause low pH and electric conductivity in summer and autumn, the seasonal variations in the pH values and the electric conductivities of two springs in Qinling Mountains are attributed to seasonal changes in CO2 produced by microorganisms’ activity in soil within respective year, rather than rainfall. The microorganisms’ activity in soil produces more CO2 during summer and autumn. Therefore, the water nature of springs in silicate regions chiefly reflects the seasonal changes of CO2 produced by the microorganisms in soil.  相似文献   

12.
Fifty groundwater samples were collected from Al-Hasa to analyze the pH, electrical conductivity (EC, dS m?1), total dissolved solids (TDS), major anions (HCO3?, CO32?, Cl?, SO42?, and NO3?), major cations (Ca2+, Mg2+, Na+, and K+), and total hardness. The analyzed data plotted in the Piper, Gibbs, and Durov diagrams, and water quality index (WQI) were calculated to evaluate the groundwater geochemistry and its water quality. The results reveal that most of the investigated samples are Ca2+, Mg2+, SO42?, Cl? and Na+, and HCO3? water types using the Piper diagram. Na+?>?Ca2+?>?Mg2+ are the dominant cations, while Cl??>?HCO3??>?SO42??>?CO32? are the dominant anions. Sodium adsorption ratio (SAR) values varied from 0.79 to 10; however, the Kelly ratio (KR) ranged between 0.1 and 2.2. The permeability index (PI) showed that well water is suitable for irrigation purposes with 75% or more of maximum permeability. The US salinity diagram revealed that the water quality classes of studied waters were CIII-SI, CIII-SII, and CIV-SII, representing height hazards of salinity and medium- to low-sodium hazard. The water quality index (WQI) results indicated that total dissolved solids are out of the drinking water standard limits in Saudi Arabia. The WQI revealed that 38% of the studied wells were considered as poor water (class III), 52% are found as very poor water class (IV), and 10% are unsuitable water for drinking class (V).  相似文献   

13.
A study was conducted in seven geothermal springs located in Bakreswar, District Birbhum, West Bengal, India, in order to assess numerous geochemical processes which were responsible for chemical composition of thermal and mineralized water. The study area lies over the Sone, Narmada, and Tapti lineament of Precambrian Chotanagpur Gneissic Complex. Water chemistry has been carried out based on reaction stoichiometry and geo-statistical tools to identify geochemical process. Piper and Gibbs diagram suggest that the spring water belongs to Ca2+-Mg2+-HCO3??+?CO32? water type and are controlled by rock dominance. Dissolution and precipitation of calcite, dolomite, gypsum, and fluorite minerals were identified as principle source of major ions in seven geothermal spring water. Principle component analyses revealed that major ions of spring water are derived from geogenic processes such as weathering, dissolution, and precipitation of various minerals. Overall results suggest that major ions of the spring’s water are derived from natural origin because no evidence of anthropogenic sources was observed during the study period. This study has also revealed that water quality of spring’s water is not suitable for drinking purposes and quite suitable for irrigation because of high abundance of Na+, K+, Cl?, and HCO3? ions.  相似文献   

14.
High‐grade gneisses (amphibolite–granulite facies) of the Namche Barwa and Gyala Peri massifs, in the eastern Himalayan syntaxis, have been unroofed from metamorphic depths in the late Tertiary–Recent. Rapid exhumation (2–5 mm year?1) has resulted in a pronounced shallow conductive thermal anomaly beneath the massifs and the intervening Tsangpo gorge. The position of the 300 °C isotherm has been estimated from fluid inclusions using CO2–H2O immiscibility phase equilibria to be between 2.5 and 6.2 km depth below surface. Hence, the near‐surface average thermal gradient exceeds 50 °C km?1 beneath valleys, although the thermal gradient is relatively lower beneath the high mountains. The original metamorphic fluid in the gneisses was >90% CO2. This fluid was displaced by incursion of brines from overlying marine sedimentary rocks that have since been largely removed by erosion. Brines can exceed 60 wt% dissolved salts, and include Ca, Na, K and Fe chlorides. These brines were remobilized during the earliest stages of uplift at >500 °C. During exhumation, incursion of abundant topography‐driven surface waters resulted in widespread fracture‐controlled hydrothermal activity and brine dilution down to the brittle–ductile transition. Boiling water was particularly common at shallow levels (<2.5 km) beneath the Yarlung Tsangpo valley, and numerous hot springs occur at the surface in this valley. Dry steam is not a major feature of the hydrothermal system in the eastern syntaxis (in contrast to the western syntaxis at Nanga Parbat), but some dry steam fluids may have developed locally.  相似文献   

15.
Assessment of groundwater quality in and around Vedaraniyam,South India   总被引:1,自引:1,他引:0  
Groundwater from 47 wells were analyzed on the basis of hydrochemical parameters like pH, electric conductivity, total dissolved solids, Ca2+, Mg2+, Na+, K+, Cl?, CO3 2?, HCO3 ?, NO3 ?, PO4 3? and F? in the Cauvery delta of Vedaraniyam coast. Further, water quality index (WQI), sodium percentage (Na %), sodium absorption ratio, residual sodium carbonate, permeability index and Kelley’s ratio were evaluated to understand the suitability of water for drinking and irrigation purposes. The result shows significant difference in the quality of water along the coastal stretch. The order of dominance of major ions is as follows: Na+ ≥ Mg2+ ≥ Ca2+ ≥ K+ and Cl? ≥ HCO3 ? ≥ CO3 2? ≥ PO4 3? ≥ F?. Na/Cl, Cl/HCO3 ratio and Revelle index confirmed that 60–70 % of the samples were affected by saline water intrusion. WQI showed that 36 % of the samples were good for drinking and the remaining were poor and unsuitable for drinking purpose. The degradation of groundwater quality was found to be mainly due to over-exploitation, brackish aquaculture practice, fertilizer input from agriculture and also due to domestic sewage.  相似文献   

16.
During the formation and development of glacial meltwater runoff, hydrochemical erosion is abundant, especially the hydrolysis of K/Na feldspar and carbonates, which can consume H+ in the water, promote the formation of bicarbonate by dissolving atmospheric CO2, and affect the regional carbon cycle. From July 21, 2015, to July 18, 2017, the CO2 concentration and flux were observed by the eddy covariance (EC) method in the relatively flat and open moraine cover area of Koxkar Glacier in western Mt. Tianshan, China. We found that: (1) atmospheric CO2 fluxes ranged from ??408.95 to 81.58 mmol m?2 day?1 (average ? 58.68 mmol m?2 day?1), suggesting that the study area is a significant carbon sink, (2) the CO2 flux footprint contribution areas were primarily within 150 m of the EC station, averaging total contribution rates of 93.30%, 91.39%, and 90.17% of the CO2 flux in the snow accumulation, snow melting, and glacial melting periods, respectively. Therefore, the contribution areas with significant influences on CO2 flux observed at EC stations were concentrated, demonstrating that grassland CO2 flux around the glaciers had little effect at the EC stations, (3) in the predominant wind direction, under stable daytime atmospheric stratification, the measurement of CO2 flux, as interpreted by the Agroscope Reckenholz Tanikon footprint tool, was 79.09% ± 1.84% in the contribution area. This was slightly more than seen at night, but significantly lower than the average under unstable atmospheric stratification across the three periods of interest (89%). The average distance of the farthest point of the flux footprint under steady state atmospheric conditions was 202.61?±?69.33 m, markedly greater than that under non-steady state conditions (68.55?±?10.34 m). This also indicates that the CO2 flux observed using EC was affected primarily by hydrochemical erosion reactions in the glacier area, (4) a good negative correlation was found between net glacier exchange (NGE) of CO2 and air temperature on precipitation-free days. Strong ice and snow ablation could promote hydrochemical reactions of soluble substances in the debris area and accelerated sinking of atmospheric CO2. Precipitation events might reduce snow and ice melting, driven by reduced regional temperatures. However, a connection between NGE and precipitation, when less than 8.8 mm per day, was not obvious. When precipitation was greater than 8.8 mm per day, NGE decreased with increasing precipitation, (5) graphically, the slope of NGE, related to daily runoff, followed a trend: snow melting period?>?snow accumulation period?>?early glacial ablation period?>?late glacier ablation period?>?dramatic glacier ablation period. The slope was relatively large during snow melting, likely because of CO2 sinking caused by water–rock interactions. The chemical reaction during elution in the snow layer might also promote atmospheric CO2 drawdown. At the same time, the damping effect of snow cover and the almost-closed glacier hydrographic channel inhibited the formation of regional runoff, possibly providing sufficient time for the chemical reaction, thus promoting further CO2 drawdown.  相似文献   

17.
Water samples from the river network and from some shallow and brackish springs located in a tectonic window of the northern Apennines of Italy were studied in the frame of a comprehensive hydrogeological investigation in order to better understand the origin and the mixing processes between the two water types noticed also in previous studies (Ca–HCO3 and Na–Cl). A sampling campaign covering the drought period during year 2010 was planned to gather electric conductivity, temperature and redox potential data along the river network and on groundwater occurrences located inside the tectonic structure. Additionally, eight water samples were collected for hydrochemical (major anions and cations: Na+, K+, Ca2+, Mg2+, HCO3 ?, Cl?, SO4 2? and trace ion Btot) and isotopic (δ18O, δ2H, 3H) analyses and compared with other eighteen samples from shallow and brackish springs collected near the study site during the period 2005–2012. Moreover, river discharge and water balance estimations were carried out. Results confirmed the presence of old Na–Cl water with salinity progressively increasing up to 5.5 g l?1 at the northern termination of the tectonic window. These values are in agreement with the ions contents of the most mineralized spring (Macognano spring: salinity of 7.6 g l?1), which has been considered as having the deepest and longest flow-path. Stable isotopes and trace ions contents are consistent with rainfall and snowmelt water mixed with brines associated with a hydrocarbon reservoir hosted at depth. Considering as end-member the more mineralized Na–Cl water, a cumulate inflow in the range of 12.9 ± 5.9 l s?1 has been estimated. This aliquot is released into the river network with different mixing proportions by the groundwater occurrences discharging from the autochthonous flysch unit.  相似文献   

18.
Mangrove forests along the Pacific Coast of Central America cover around 4,000 km2. Most of this coast is occupied with tropical dry forest mangroves where basal areas range between 6 and 20 m2 ha?1 and canopy heights rarely exceed 20 m. Rainfall and runoff alter structure and floristic composition from site to site. Reproductive phenology and mortality appear to be related to soil water availability.Avicennia bicolor forests reach a density of 4,350 plants that are taller than 0.50 m ha?1, with 769 trees above 5 cm diameter at breast height A total basal area of 41 m2 ha?1 together with a canopy height of about 23 m place these forests among the most developed in the western hemisphere. Growth rate (0.38 m2 ha?1 yr?1) is surprisingly high for mangrove forests under a seasonal dry climate.  相似文献   

19.
为了研究泉水化学成分特点和在一年内的变化,文章利用pH-电导率自动记录仪对陕西秦岭翠华山地区两处泉水化学成分进行了每月2次的观测,并进行了水化学分析。翠华山泉水中HCO-3含量在76.27~152.55mg/L之间,Ca2+含量在14.48~26.92mg/L之间,Mg2+含量在4.46~4.89mg/L之间,K+含量在0.60~2.75mg/L之间,Na+含量在0.93~1.09mg/L之间,这些成分的特点是含量低。泉水pH值在6.98~5.69之间,夏秋季低于该区雨水的pH值,具酸性特征,这是该区地层主要由片麻岩构成决定的。从1月到11月,水秋池村泉水pH值和电导率呈现由大到小再到大的变化规律,引起这种变化的主要原因是夏秋季土壤CO2含量比冬春季高,泉水在夏秋季流动过程中吸收了较多的CO2。翠华湖西泉水pH值和Ca2+,Mg2+,K+,Na+离子含量比水秋池泉水高,从1月到11月Ca2+,Mg2+,K+,Na+离子含量变化与水秋池泉水变化相反,这应当是两个泉水的来源不同或在流动过程中遇到了酸碱性不同的土层和地层造成的。翠华山地区泉水化学成分变化是易于观测到的规律性很强的变化。  相似文献   

20.
Geothermal water is plentiful in Changbai Mountain region, northeastern China, due to the volcanic activities and widespread faults. For the exploration of geothermal resources, this study uses quartz and cation geothermometer to estimate the temperatures of the geothermal reservoir and uses the tubular models to evaluate the thermal gradient. The hydrogeochemical characteristics of the geothermal resources were also evaluated by hydrogeochemical analysis. The results showed that the geothermal reservoir temperatures of the four major thermal springs in Changbai Mountain region range from 72 to 169 °C. The average geothermal reservoir temperatures of Jinjiang hot springs, Changbai hot springs I, Xianrenqiao hot springs, and Changbai hot springs II are 129.25, 169, 89, and 73.67 °C, respectively. The geothermal gradient values of the four major thermal springs have different characteristics. The geothermal gradient values of Jinjiang hot springs and Changbai hot springs I are 4.6 and 3.1 °C/100 m, respectively. The geothermal gradient values of Xianrenqiao thermal springs and Changbai thermal springs II are both lower than 1.5 °C/100 m, with the values of 1.1 and 1.4 °C/100 m. And the geothermal gradients are influenced by Changbai Mountain Tianchi volcano. In addition, the water chemical analyses showed that the geothermal water types are HCO3-Na with higher concentrations of Na+, Cl?, SO4 2?, TDS, and HCO3 ? than the non-thermal waters, which suggested a deep and long water cycle of the thermal water, and therefore a sufficient water-rock interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号