首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Mavromichalaki  H.  Petropoulos  B.  Zouganelis  I. 《Solar physics》2002,206(2):401-414
Monthly mean values of the coronal index of solar activity and other solar indices are analyzed for the period 1965–1997 covering three solar cycles. The coronal index is based upon the total irradiance of the coronal 530.3 nm green line from observations at five stations. The significant correlation of this index with the sunspot number and the number of the grouped solar flares have led to an analytical expression which can reproduce the coronal index of solar activity as a function of these parameters. This expression well explains the existence of the two maxima during the solar cycles taking into account the evolution of the magnetic field that can be expressed by a sinusoidal term with a 6-year period. The agreement between observed and calculated values of the coronal index on a monthly basis is high enough and reaches the value of 92%. It is concluded that the coronal index can be used as a representative index of solar activity in order to be correlated with different periodic solar–terrestrial phenomena useful for space weather studies.  相似文献   

2.
The time variations in the latitudinal distribution of the rotation of active regions and coronal holes are investigated. The synoptic maps obtained from observations in the He I 1083 nm line at Kitt Peak Observatory over almost three solar cycles are used as observational data. A Fourier analysis of the time series constructed from synoptic maps has yielded the following results. The rotation of active regions differs significantly from the rotation of coronal holes in all parameters: the set of the most significant rotation periods, their latitudinal distribution, and time variations. The rotation of active regions and coronal holes is characterized by variations from cycle to cycle, a time-varying north-south asymmetry. The power spectra for consecutive cycles of solar activity differ significantly for both epochs of high activity and minima. Analysis of the total power of the spectra within four selected intervals of periods from 21 to 33 days has shown that the total power is highest in the intervals of periods 24–27 and 27–30 days. This is valid for both active regions and coronal holes. The correlation between the total powers in the above intervals of periods changes noticeably with time. Long-lived or successively appearing active regions with rotation periods in the range 24–30 days are typical of the time of a sharp decrease in the total equivalent width of active regions. This includes not only the decline time of the 11-year cycles, but also the minima between recurrent activity maxima during one cycle. A predominance of long-lived coronal holes as their total equivalent width decreases is noticeable for coronal holes with rotation periods in the interval 30–33 days. All of the above results suggest that the rotation of solar structures is determined mainly by the subphotospheric sources of specific structures, not by the rotation of the main volumes of solar plasma of the quiet Sun.  相似文献   

3.
Temporal variability of the coronal index – the `Sun as a star' coronal green-line irradiance – is presented using wavelet transform over the epoch of almost 5 solar cycles. A significant index variability was found for all periods, particularly for the periods of 150 days and 1year as well as 28days. Connection of the variability with the phase of solar magnetic activity is outlined. The enhanced power of the 150-day period is dominant before and after the magnetic activity maxima in four out of the five cycles analyzed. To the contrary, no enhanced power was found just during the maxima of all cycles for this period. No clear periodic power behavior was found for the periods at about one year. Substantial rotation period variations of the coronal index up to 5days take place over relatively short time intervals. A comparison of the results of the Fourier transform and the time-period wavelet transform of the coronal index time series shows that only the application of the wavelet analysis enables one to find the relation between the coronal index variability and the course of the magnetic activity of the Sun.  相似文献   

4.
The long-term modulation of cosmic ray intensity (CRI) by different solar activity (SA) parameters and an inverse correlation between individual SA parameter and CRI is well known. Earlier, it has been suggested that the concept of multi-parametric modulation of CRI may play an important role in the study of long-term modulation of CRI. In the present study, we have tried to investigate the combined effect of a set of two SA parameters in the long-term modulation of CRI. For this purpose, we have used a new statistical technique called “Running multiple correlation method”, based on the “Running cross correlation method”. The running multiple correlation functions among different sets of two SA parameters (e.g., sunspot numbers and solar flux, sunspot numbers and coronal index, sunspot numbers and grouped solar flares, etc.) and CRI have been correlated separately. It is found that the strength of multiple correlation (among two SA parameters and CRI) and cross correlation (between individual SA parameter and CRI) is almost similar throughout the period of investigation (1955–2005). It is also found that the multiple correlations among various SA parameters and CRI is stronger during ascending and descending phases of the solar cycles and it becomes weaker during maxima and minima of the solar cycles, which is in accordance with the linear relationship between SA parameters and CRI. The values of multiple correlation functions among different sets of SA parameters and CRI fall well within the 95% confidence interval. In the view of odd-even hypothesis of solar cycles, the strange behaviour of present cycle 23 (odd cycle), as this is characterized by many peculiarities with double peaks and many quiet periods (Gnevyshev gaps) interrupted the solar activity (for example April 2001, October–November 2003 and January 2005), leads us to speculate that the solar cycle 24 (even cycle) might be of exceptional nature.  相似文献   

5.
We have investigated the correlation between the relative sunspot number and tilt of the heliospheric current sheet (HCS) in solar cycles 21–23. Strong and highly significant positive correlation (r > 0.8, P < 0.001) was found for corresponding data in the time interval from May 1976 through December 2004. Cross-correlation analysis does not reveal any time shift between the data sets. Reconstructed values of the HCS tilt, for the time interval before 1976, are found using sunspot numbers. To take different amplitude of solar cycles into account they were then normalized to zero in the minima of the solar activity and to average in solar cycles 21–23 maximal calculated HCS tilt in the maxima. These normalized reconstructed HCS data are compared with the angular positions of the brightest coronal streamers observed during total solar eclipses in 1870–2002, and their agreement is better for the minima of the solar activity than for the maxima.  相似文献   

6.
The original coronal index of the solar activity (CI) has been constructed on the basis of ground-based measurements of the intensities of the coronal line of 530.3 nm (Rybanský in Bull. Astron. Inst. Czechoslov., 28, 367, 1975; Rybanský et al. in J. Geophys. Res., 110, A08106, 2005). In this paper, CI is compared with the EUV measurements on the CELIAS/SEM equipment based on the same idea as the original idea of the coronal index. The correlation is very good for the period 1996?–?2005 (r=0.94 for daily values). The principal result of this paper is the introduction of the modified coronal index (MCI) which in all uses and contexts can replace the existing CI index. Daily MCI values extend over a time period of six solar activity cycles. Future MCI measurements will be derived from more reliable measurements made by space-based observatories that are not influenced by the weather. MCI measurements are and will continue to be archived at the web site of the Slovak Central Observatory in Hurbanovo ( http://www.suh.sk/obs/vysl/MCI.htm ).  相似文献   

7.
The global structure of the solar corona observed in the optical window is governed by the global magnetic field with different characteristics over a solar activity cycle. The Ludendorff flattening index has become a popular measure of global structure of the solar corona as observed during an eclipse. In this study, 15 digital images of the solar corona from 1991 to 2016 were analyzed in order to construct coronal flattening profiles as a function of radius. In most cases, the profile can be modeled with a 2nd order polynomial function so that the radius with maximum flattening index(Rmax) can be determined. Along with this value, Ludendorff index(a + b) was also calculated. Both Ludendorff index and Rmax show anti-correlation with monthly sunspot number, though the Rmax values are more scattered. The variation in Rmax can be regarded as the impact of the changing coronal brightness profile over the equator.  相似文献   

8.
Wauters  L.  Dominique  M.  Milligan  R.  Dammasch  I. E.  Kretzschmar  M.  Machol  J. 《Solar physics》2022,297(3):1-22

In most of the solar cycles, activity in the northern and southern hemispheres peaks at different times. One hemisphere peaks well before the other, and at least one of the hemispheric maxima frequently does not coincide with the whole sphere maximum. Prediction of the maximum of a hemisphere and the corresponding north–south asymmetry of a solar cycle may help to understand the mechanisms of the solar cycle, the solar-terrestrial relationship, and solar-activity influences on space weather. Here we analysed the sunspot-group data from the Greenwich Photoheliographic Results (GPR) during 1874?–?1976 and Debrecen Photoheliographic Data (DPD) during 1977?–?2017 and studied the cycle-to-cycle variations in the values of 13-month smoothed monthly mean sunspot-group area in the whole sphere (WSGA), northern hemisphere (NSGA), and southern hemisphere (SSGA) at the epochs of maxima of Sunspot Cycles 12?–?24 and at the epochs of maxima of WSGA, NSGA, and SSGA Cycles 12?–?24 (note that solar-cycle variation of a parameter is expressed as a cycle of that parameter). The cosine fits to the values of WSGA, NSGA, and SSGA at the maxima of sunspot, WSGA, NSGA, and SSGA Cycles 12?–?24, and to the values of the corresponding north–south asymmetry, suggest the existence of a ≈132-year periodicity in the activity of the northern hemisphere, a 54?–?66-year periodicity in the activity of the southern hemisphere, and a 50?–?66 year periodicity in the north–south asymmetry in activity at all the aforementioned epochs. By extrapolating the best-fit cosine curves we predicted the amplitudes and the corresponding north–south asymmetry of the 25th WSGA, NSGA, and SSGA cycles. We find that on average Solar Cycle 25 in sunspot-group area would be to some extent smaller than Solar Cycle 24 in sunspot-group area. However, by inputting the predicted amplitudes of the 25th WSGA, NSGA, and SSGA cycles relationship between sunspot-group area and sunspot number we find that the amplitude (\(130\pm 12\)) of Sunspot Cycle 25 would be slightly larger than that of reasonably small Sunspot Cycle 24. Still it confirms that the beginning of the upcoming Gleissberg cycle would take place around Solar Cycle 25. We also find that except at the maximum of NSGA Cycle 25 where the strength of activity in the northern hemisphere would be dominant, the strength of activity in the southern hemisphere would be dominant at the maximum epochs of the 25th sunspot, WSGA, and SSGA cycles.

  相似文献   

9.
Anomalies in the solar magnetic fields of various scales are studied. The polar magnetic field strength is shown to have decreased steadily during the last three solar cycles. This is because the increase in the dipole magnetic moment observed from 1915 to 1976 has changed into a decrease in the last three cycles. At the same time, the medium scale magnetic fields (like those of isolated coronal holes) have been unusually strong in the last cycle. As a result, the tilt of the heliospheric current sheet is still about 30°. The large effective contribution from the medium scale fields to the total energy of the large-scale fields is also confirmed by our calculations of the effective multipolarity index. The aa-index at the cycle minima is correlated with the height of the succeeding maxima. The set of data considered may be indicative of the possible approach of a sequence of low solar cycles.  相似文献   

10.
Rybanský  M.  Minarovjech  M.  RuŠin  V. 《Solar physics》2003,217(1):109-118
We analysed the green-line coronal intensities (530.3 nm, Fexiv), both their time- latitudinal distribution as well as the coronal index of solar activity (CI) over the period 1996–2002. Maximum values of the CI (smoothed) were observed in mid-August 2001, even though the `first' peak was observed in the period January–April 2000. The maximum of the Wolf number occurred in 2000, April – July, and the `second peak' occurred in December 2001–March 2002. Both indices have a similar course in the cycle, but their maxima are shifted by 1.5 year. There was high correlation between CI and Wolf number, the 2800 MHz radio flux, the X-ray 0.1–0.8 nm flux and cosmic-ray flux. The CI values in present cycle 23 are lower than those of the two former solar cycles 21 and 22 by about 1/3. Polar branches, which separated from the principal equatorward branch at mid-latitudes in the cycle minimum, 1996, reached the poles around 2000. The new principal branch for cycle 24 split in 2001, turned over around ±60° in 2002.5 and moves to the equator, where it will end in 2019. Minimum between cycles 23 and 24 will occur around 2007.5, cycle maximum 24 around 2012.5. Poleward branches in cycle 24 will reach the solar poles in 2011.  相似文献   

11.
The interaction between differential rotation and magnetic fields in the solar convection zone was recently modelled by Brun (2004). One consequence of that model is that the Maxwell stresses can oppose the Reynolds stresses, and thus contribute to the transport of the angular momentum towards the solar poles, leading to a reduced differential rotation. So, when magnetic fields are weaker, a more pronounced differential rotation can be expected, yielding a higher rotation velocity at low latitudes taken on the average. This hypothesis is consistent with the behaviour of the solar rotation during the Maunder minimum. In this work we search for similar signatures of the relationship between the solar activity and rotation determined tracing sunspot groups and coronal bright points. We use the extended Greenwich data set (1878–1981) and a series of full-disc solar images taken at 28.4 nm with the EIT instrument on the SOHO spacecraft (1998–2000). We investigate the dependence of the solar rotation on the solar activity (described by the relative sunspot number) and the interplanetary magnetic field (calculated from the interdiurnal variability index). Possible rotational signatures of two weak solar activity cycles at the beginning of the 20th century (Gleissberg minimum) are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
I. Dorotovič 《Solar physics》1996,167(1-2):419-426
The correlation between the size of polar coronal holes and sunspot numbers has been investigated for the last five solar cycles. The area of polar coronal holes over the period from 1939 to 1993 was derived from ground-based observations of the green coronal line at 530.3 nm (Fe xiv). Correlation analysis revealed that there is no general shift in the maxima of the curves of these two solar indices. The analysis showed the same shift in months in cycles 21 and 22 when the best correlation between the indices is reached; the time shift found in cycle 20 is slightly different from that in cycle 18; in cycle 19, there is found a shift with a value between the values in cycles 18, 20 and 21, 22. The time between succesive peaks of smoothed polar hole size and smoothed sunspot number is different in each cycle.  相似文献   

13.
To investigate the long-term modulation of galactic cosmic rays at the ground-based detector energies, the monthly values of the neutron monitor (Climax, Mt. Washington, Deep River, and Huancayo) and ionization chamber (Cheltenham/Fredericksburg, Huancayo, and Yakutsk) intensities have been correlated with the sunspot numbers (used as a proxy index for transient solar activity) for each phase of sunspot cycles 18 to 22. Systematic differences are found for results concerning odd and even sunspot cycles. During odd cycles (19 and 21) the onset time of cosmic-ray modulation is delayed when compared with the onset time of the sunspot cycle, while they are more similar during even (18, 20, and 22) cycles. Checking the green corona data, on a half-year basis, we found typical heliolatitudinal differences during ascending phases of consecutive sunspot cycles. This finding suggests a significant role of the latitudinal coronal behaviour in the heliospherical dynamics during a Hale cycle. Such effectiveness concerns not only the transient interplanetary perturbations but also the recurrent ones. In fact, when lag between cosmic-ray data and sunspot numbers is considered, the anticorrelation between both parameters is very high (correlation coefficient |r| > 0.9) for all the phases considered, except for the declining ones of cycles 20 and 21, when high-speed solar wind streams coming from coronal holes affect the cosmic-ray propagation, and theRz parameter is no longer the right proxy index for solar-induced effects in the interplanetary medium.  相似文献   

14.
Analyzing daily values of the total solar irradiance (TSI), the coronal index of solar activity (CI), and the Mg II 280-nm core-to-wing ratio (Mg II index), we have found that the temporal variations of these indices are very similar to each other during the period from 1978 to 2005. The correlation between CI and TSI, with the PSI correction lying within the interval under study, has been found to be 0.699, which is very close to the value of 0.703 of the correlation between Mg II and TSI for 27-day averages (the CI – Mg correlation is 0.824). The regression equation between CI and TSI is almost linear, except for TSI depletions when a large number of sunspots are present on the visible disk. By employing CI, an extrapolation of TSI back to 1947 is presented.  相似文献   

15.
S. Bravo  G. Stewart 《Solar physics》1994,154(2):377-384
A very good correlation between the evolution of polar coronal hole size and sunspot number half a solar cycle later was found by Bravo and Otaola for solar cycle 21. In this paper we use a more complete set of data to reanalyse the relationship for solar cycle 21 and investigate the same relationship for solar cycle 22. We find that the complete set of data for cycle 21 yields a slightly different time shift for the best correlation between sunspots and holes and that the time shift for cycle 22 is different from that of cycle 21. However, because of limited availability of data of cycle 22, we consider it necessary to wait until the end of this cycle in order to decide if the difference is statistically significant or not. We also found that the time between successive peaks of smoothed polar hole area and smoothed sunspot number is the same in both cycles. This may provide a useful tool for the forecasting of future sunspot maxima. The constant of proportionality between polar coronal hole area and sunspot number can be seen to be different in both cycles. We discuss this difference and interpret it in terms of a different magnitude of the polar field strength in the two cycles.  相似文献   

16.
本文对22太阳活动用以来的中低纬冕洞和地磁指数Ap进行了统计。对以月、季、年及22周以来不同时段冕洞和地磁指数(Planetary的A指教)的时段合成图进行了分析。  相似文献   

17.
The statistics of extreme values is used to investigate the statistical properties of the largest areas of sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun.  相似文献   

18.
S. Zięba  Z. Nieckarz 《Solar physics》2014,289(7):2705-2726
Solar activity slowly and irregularly decreases from the first spotless day (FSD) in the declining phase of the old sunspot cycle and systematically, but also in an irregular way, increases to the new cycle maximum after the last spotless day (LSD). The time interval between the first and the last spotless day can be called the passive interval (PI), while the time interval from the last spotless day to the first one after the new cycle maximum is the related active interval (AI). Minima of solar cycles are inside PIs, while maxima are inside AIs. In this article, we study the properties of passive and active intervals to determine the relation between them. We have found that some properties of PIs, and related AIs, differ significantly between two group of solar cycles; this has allowed us to classify Cycles 8?–?15 as passive cycles, and Cycles 17?–?23 as active ones. We conclude that the solar activity in the PI declining phase (a descending phase of the previous cycle) determines the strength of the approaching maximum in the case of active cycles, while the activity of the PI rising phase (a phase of the ongoing cycle early growth) determines the strength of passive cycles. This can have implications for solar dynamo models. Our approach indicates the important role of solar activity during the declining and the rising phases of the solar-cycle minimum.  相似文献   

19.
From observations of the solar white-light corona at 65 eclipses from 1851 to 2015 we confirm earlier findings that the flattening index of the white-light corona depends on the phase, rather than the magnitude of solar cycles, which is in contrast with behavior of other major solar activity indices like the sunspot number, the 2800 MHz radio flux, etc. This indicates that mechanisms responsible for creation and distribution of helmet streamers, the most essential coronal structures influencing the flattening index, could be of different magnetic nature from those of other manifestations of solar surface activity.  相似文献   

20.
A. Kilcik  A. Ozguc 《Solar physics》2014,289(4):1379-1386
We investigate solar activity by focusing on double maxima in solar cycles and try to estimate the shape of the current solar cycle (Cycle 24) during its maximum. We analyzed data for Solar Cycle 24 by using Learmonth Solar Observatory sunspot-group data collected since 2008. All sunspot groups (SGs) recorded during this time interval were separated into two groups: The first group includes small SGs [A, B, C, and H classes according to the Zurich classification], the second group consists of large SGs [D, E, and F]. We then calculated how many small and large sunspot groups occurred, their sunspot numbers [SSN], and the Zurich numbers [Rz] from their daily mean numbers as observed on the solar disk during a given month. We found that the temporal variations for these three different separations behave similarly. We also analyzed the general shape of solar cycles from Cycle 1 to 23 by using monthly International Sunspot Number [ISSN] data and found that the durations of maxima were about 2.9 years. Finally, we used the ascending time and SSN relationship and found that the maximum of Solar Cycle 24 is expected to occur later than 2011. Thus, we conclude that i) one possible reason for a double maximum in solar cycles is the different behavior of large and small sunspot groups, and ii) a double maximum is expected for Solar Cycle 24.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号