首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为了调查羌塘盆地中部壳内低速层分布特征,对布设在羌塘盆地的TITAN-I宽频带地震台站所记录的远震波形数据进行接收函数分析,并引入时频域相位滤波技术改善接收函数信噪比,反演得到各台站下方100 km深度范围内的一维S波速度结构.结果表明,时频域相位滤波方法能够显著提高信噪比;羌塘盆地Moho深度为58±6 km,具有较高的泊松比值;中下地壳壳内低速层广泛分布,横向不连续,埋深在20~30 km,层厚6~12 km,剪切波速度为3.4±0.1 km/s;部分地区在埋深为10 km的中上地壳存在一层厚约4 km的低速薄层.羌塘盆地中下地壳壳内低速层是由于上涌的深部软流圈物质与下地壳发生大范围的接触,造成壳内及上地幔部分熔融引起的.  相似文献   

2.
龙门山及其邻区的地壳厚度和泊松比   总被引:8,自引:0,他引:8       下载免费PDF全文
根据龙门山及其周边地区(26°~35°N,98°~109°E)的132个台站的宽频带远震记录,使用H-k叠加方法计算地壳厚度和波速比.结果表明该区域的地壳厚度总体变化是:从东向西增加,东部的最小厚度为37.8km,西部的最大厚度是68.1 km,其中横跨龙门山断裂带的地壳厚度变化最大,从东南的41.5km增加到西北的52.5km.根据Airy均衡理论,用台站的高程和观测地壳厚度数据求得最小二乘意义下的壳幔密度差为0.649g/cm3,平均地壳厚度为37.9km.龙门山及其邻近地区基本上处于均衡状态.松潘-甘孜地体北部和西秦岭造山带具有低泊松比(v<0.26),扬子地台的西南部具有低一中泊松比(v<0.27),松潘-甘孜地体南部、三江褶皱带和四川盆地具有中一高泊松比(0.26≤P≤0.29).该地区的泊松比空间分布不支持青藏高原东部广泛分布的下地壳流的假说.龙门山断裂带南段及其附近地区的高泊松比(v≥0.30)可以看成是地壳具有较高的铁镁质组分和/或存在部分熔融.该地区下地壳可能是处于富含流体和温度较高的部分熔融状态.松潘-甘孜块体南部的上地壳物质向东运动,受刚性强度较大的扬子地台的阻挡,导致沿龙门山断裂带产生应变积累.当断层被地壳流体弱化,积累的应变能量快速释放,产生汶川Ms8.0地震.  相似文献   

3.
龙门山断裂带深部构造和物性分布的分段特征   总被引:8,自引:0,他引:8  
根据龙门山断裂带周边的固定数字地震台网和流动地震观测获得的宽频带地震记录,用多种地震学方法研究该地区的地壳上地幔结构。深部结构研究表明,龙门山断裂带物性分布具有显著的分段特征。用远震接收函数H-k叠加方法计算了各个台站的地壳厚度和波速比。地壳厚度总体变化是,地壳从东向西增厚,最小厚度为37.8 km,最大厚度是68.1 km。从东南向西北横跨龙门山断裂带的地壳急剧增厚,从41.5 km增厚至52.5 km。但是,龙门山断裂带两侧地壳厚度的差异在断裂带的南段和北段是不同的。在南段,地壳厚度急剧变化的分界线在中央断裂附近;在中段,分界线在后山断裂附近;在北段,则断裂带两侧地壳厚度差异很小。泊松比的空间分布是,松潘—甘孜地体北部和西秦岭造山带具有低泊松比(ν<0.26),扬子地台具有低—中泊松比(ν<0.27),松潘—甘孜地体南部、三江褶皱带和四川盆地具有中—高泊松比(0.26<ν<0.29)。除龙门山断裂带南段及其附近,大部分地区均不具有超高的泊松比(ν>0.30)。龙门山断裂带南段地壳具有高泊松比(ν>0.30),而北段地壳则为中—低泊松比。高泊松比可以看成是铁镁质组分增加和/或部分熔融的证据,表明那里的下地壳部分熔融是可能的。松潘—甘孜地体东南部地区的下地壳处于富含流体或温度较高的部分熔融状态,它有助于青藏高原的下地壳物质向东运动。青藏高原东部中、上地壳向东运动受刚性强度较大的扬子地台的阻挡,沿龙门山断裂带产生应变能积累。当应变达到临界值,发生急剧的摩擦滑动,释放积累的应变能,产生汶川Ms8.0地震。汶川地震在龙门山断裂带不同地段,表现出不同的破裂特征和余震分布,可能与断层带的分段深部构造差异有关。  相似文献   

4.
利用中国地震台网33个台站记录的远震资料,采用接收函数扫描法和线性反演方法,对重庆及其邻区的壳幔速度结构进行了研究,获得了研究区内地壳厚度、Vp/Vs以及壳幔速度的分布特征。研究结果表明:重庆区域地壳厚度最厚为CHK台站,为50.4km;最薄为ROC台站,为38.5km;中部地区厚度为41~45km。在所设定测线A—A'上,莫霍面有一定起伏,四川盆地处浅层速度偏低,在WUL台处发现台站下方8~10km处有低速异常,推断这个很薄的低速区很可能是导致川东薄皮褶皱构造的滑脱面。  相似文献   

5.
青藏高原东南部作为板块碰撞的前缘地带一直是地球科学研究的热点,为了揭示碰撞前缘地带地壳结构特征,作者 利用布设在中国青藏高原东南部的38个宽频带流动台站记录的2487条远震P波接收函数,采用接收函数CCP叠加(共转换点 叠加)和H-κ叠加两种方法获得了研究区域详细的地壳厚度图像和泊松比值。研究结果显示:两种方法获得的地壳厚度特征 具有较好的一致性;青藏高原东南部地壳厚度存在明显的东西差异和南北差异;喜马拉雅构造区内莫霍面深度变化较大, 介于65~80 km之间;拉萨地体内莫霍面深度介于72~80 km之间;雅鲁藏布缝合带两侧地壳厚度突变,缝合带北侧和南侧地 壳厚度相差约8 km。研究区域平均泊松比值较小,为0.24,和大多数造山带泊松比偏低的特征类似。研究区域中下地壳广 泛存在强转换界面,该界面可能对应中下地壳高速层的上界面,埋深40~70 km,表明壳内发生深熔或部分熔融作用,导致 壳内发生重力分异,在中下地壳形成了高速薄层。  相似文献   

6.
介绍了近年来天然地震体波和面波层析成像以及接收函数在怀俄明克拉通地区的应用。怀俄明克拉通地区的地壳和上地幔结构可以归结为克拉通成型时期的残存高速度异常以及进行中Yellowstone低速地幔柱。在克拉通南部边界缝合带地区以及在中部和北部下地壳中保存着一些高速度结构。南部边界缝合带地区的高速度倾斜上地幔结构与人工地震剖面LithoProbe在北美各个克拉通边界所记录的上地幔倾斜反射体一致。作为一个可能的上地幔消减板块残留体,这个倾斜上地幔结构显示出板块叠加可能是一个普遍的克拉通成型过程。在克拉通缝合带的莫霍面和上地幔深度,人工地震的研究结果显示板块叠加过程形成一个楔形体,体现出克拉通上地幔的较高粘度系数。接收函数的转换波共转换点叠加技术显示出这种楔形体存在于整个怀俄明克拉通的南部边界。接收函数和基于噪声的瑞利波层析成像图像显示出在克拉通地壳增厚地区存在下地壳高速体。作为早期岩石圈分裂过程残留的火成岩侵入体,这种下地壳高速体存在于较早成型的克拉通北部和中部地区,显示出南部克拉通地区不同的形成机制。克拉通的西部地区受到Yellowstone地幔柱的影响。层析成像显示低速的地幔柱从黄石地区向下延伸到至少500km。在消蚀岩石圈的同时,岩浆侵入体沿着hotspottrack在中地壳大量的形成,并引起下地壳岩石的横向流动。  相似文献   

7.
文中利用分布在鄂尔多斯块体及其南部周缘地区的53 个宽频带地震固定台站的连续波形记录,采用双台互相关计算 方法由背景噪声提取瑞利波格林函数,经时频分析获得相速度和群速度频散曲线,并分别计算了汾渭地堑、秦岭北缘、鄂 尔多斯块体内部和六盘山地区4 个不同构造区的平均频散曲线,进而反演了各构造区的地壳上地幔一维横波速度结构。结 果显示:地壳厚度在汾渭地堑为34 km,在秦岭北缘地区和鄂尔多斯块体均为40 km,在六盘山地区最厚,达49~50 km;相 应的上地幔顶部横波速度分别为4.20,4.2,4.30 和4.15 km/s;地壳内结构浅部特征差异最大,在地壳中部六盘山地区的速 度较低,下部地壳不同地区的波速较一致。  相似文献   

8.
利用中国地震台网36个台站记录的远震资料,采用接收函数扫描法和线性反演方法对重庆及其相邻地区的壳幔速度结构进行了研究,获得了研究区内地壳厚度、Vp/Vs以及壳幔速度的分布特征。通过接收函数扫描(H-κ)法与线性反演法得到台站下方地壳厚度,发现研究区地壳厚度变化剧烈。研究结果表明重庆区域地壳厚度最厚的地段为城口(C) HK)台站,有50. 4Km,最薄的地方为荣昌(ROC台站,为38. 5Km,重庆的中部地区厚度为41Km~45Km。  相似文献   

9.
华北克拉通泊松比与地壳厚度的关系及其大地构造意义   总被引:25,自引:1,他引:24  
嵇少丞  王茜  杨文采 《地质学报》2009,83(3):324-330
华北克拉通破坏和岩石圈减薄已成为我国乃至国际地学界研究的热点之一。本文作者对许卫卫和郑天愉(2005)采用接收函数方法测量渤海湾西北盆岭地区58个宽频地震台站下面地壳厚度和地壳泊松比的资料进行了详细的分析研究。在冀东北、辽西以及石家庄附近的南太行山地区地壳泊松比随地壳厚度增加呈非线性骤然陡降,说明在这些地区中新生代地壳减薄作用主要集中于长英质的中上地壳。在保定—大同和官厅水库—张家口—张北地区,地壳泊松比随地壳厚度增加作缓慢地线性减小,说明由玄武岩浆底侵作用造成的地壳泊松比增加抵消了一部分由长英质中上地壳减薄造成的泊松比减小。所以,在中新生代华北克拉通地壳减薄过程中,上地幔部分熔融及玄武岩浆底侵作用主要集中在保定—大同和官厅水库—张家口—张北等冀西北地区。  相似文献   

10.
       由1876个远震三分量P波地震图组成的数据集,取自布置于鄂尔多斯-太行山一线的宽频带流动台站。通过阵列反 卷积方法,得到地下界面响应的接收函数,并通过共转换点偏移叠加得到地下结构的图像。图像显示,从鄂尔多斯至渤海 湾盆地地壳厚度总体上逐渐变薄,Moho面总体呈小角度向西倾斜。鄂尔多斯块体中部地壳最厚,达到52 km,向东到鄂尔多 斯边缘,地壳厚度减小至43 km。太行山至渤海湾盆地地壳厚度从45 km减小至37 km。山西地堑下方Moho面上隆,和两边的 Moho面相比,抬升8~10 km,且其Moho面的上隆和新生代地堑的凹陷呈镜像关系。  相似文献   

11.
盐湖沉积具有成盐多期性和长期性、沉积连续性、淡化-咸化周期性等特色,因而成为在恢复古气候环境、进行全球变化研究的重要研究对象之一。本文以我国东部独具特色的古近纪古盐湖盆地--江汉盆地潜江凹陷潜江组盐韵律为例,通过对王平1等3口井连续取心段的精细研究,在前人划分Ⅰ、Ⅱ、Ⅲ级盐韵律的基础上,首次划分出组成含盐层系基础韵律单元--Ⅳ级盐韵律,弄清了其沉积过程基本遵循从盐岩→(含泥)钙芒硝岩→含云泥岩(含泥云岩)→泥岩→白云岩→钙芒硝岩→盐岩的淡化-咸化序列和盐类矿物的析出顺序;解析了Ⅳ级盐韵律及其沉积组合记录与水体古盐度波动和短尺度(0.05ka -1.0ka)古气候干-湿变化之间的对应关系。根据典型暖相盐类矿物原生钙芒硝及其薄层在潜江组中广泛发育,可以推断江汉盆地流域在晚始新世-早渐新世潜江组沉积期间,所出现的干旱古气候背景属于暖旱型而非寒旱型。  相似文献   

12.
Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling–Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian–Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.  相似文献   

13.
      利用不同类型鱼嘴状石香肠构造恢复能干层原岩的初始厚度,并进一步分析原岩发生在应变椭球Z轴方向和X方向 的线应变,以应变差折射流变计的方法为基础,推导出一种求相同基质中相邻能干层粘度比的估测方法。以湖北大冶铁山 地区采集的两块鱼嘴状石香肠标本为例进行了应用尝试,得到大理岩基质中两层不同的角岩鱼嘴状香肠体的粘度比分别为 3.07和0.75。  相似文献   

14.
One in-line wide-angle seismic profile was conducted in 1990 in the course of the Southeastern China Continental Dynamics project aimed at the study of the contact between the Cathaysia block and the Yangtze block. This 380-km-long profile extended in NW–SE direction from Tunxi, Anhui Province, to Wenzhou, Zhejiang Province. Five in-line shots were fired and recorded at seismic stations with spacing of about 3 km along the recording line. We have used two-dimensional ray tracing to model P- and S-wave arrivals and provide constraints on the velocity structure of the upper crust, middle crust, lower crust, Moho discontinuity, and the top part of the lithospheric mantle. P-wave velocity, S-wave velocity and VP/VS ratio are mapped. The crust is 36-km thick on average, albeit it gradually thins from the northwest end to the southeast end (offshore) of the profile. The average crustal velocity is 6.26 km/s for P-waves but 3.6 km/s for S-waves. A relatively narrow low-velocity layer of about 4 km of thickness, with P- and S-wave velocities of 6.2 km/s and 3.5 km/s, respectively, marks the bottom of the middle crust at a depth of 23-km northwest and 17-km southeast. At the crust–mantle transition, the P- and S-wave velocity change quickly from 7.4 to 7.8 km/s (northwest) and 8.0 to 8.2 km/s (southeast) and from 3.9 to 4.2 km/s (northwest) and 3.9 to 4.5 km/s (southeast), respectively. This result implies a lateral contrast in the upper mantle velocity along the 140 km sampled by the profile approximately. The average VP/VS ratio ranges from 1.68–1.8 for the upper crust to 1.75 for the middle and 1.75–1.85 for lower crust. With the interpretation of the wide-angle seismic data, Jiangshan–Shaoxin fault is considered as the boundary between the Yangtze and the Cathaysia block.  相似文献   

15.
We use teleseismic body waveforms to explore S-wave layered velocity structures beneath 30 portable digital seismic stations deployed around western Yunnan Province. Results show that the Moho depth in this region is ∼40 km and decreases in general from north to south, consistent with previous geophysical studies. Associated with this lateral variation of the Moho depth, the lower crust above the Moho discontinuity has a 15–25 km thick zone with an S-wave velocity lower than that of the upper crust. This lower velocity zone might be interpreted as a lower crust weak channel, which may mechanically partially decouple the upper-crust deformation from the underlying mantle. Thus, the inverted S-wave velocity structure could provide new evidence for the lateral flow of lower crust in the build-up of the south-eastern Tibetan plateau.  相似文献   

16.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

17.
Abdullh M.S. Al-Amri   《Tectonophysics》1998,290(3-4):271-283
The crustal structure of the western Arabian platform is derived using the spectral analysis of long-period P-wave amplitude ratios. The ratio of the vertical to the horizontal component is used to obtain the crustal transfer function based on thickness variations, crustal velocities, densities and the angle of emergence at the lower crust and upper mantle interface. Eleven well-defined earthquakes recorded at the long-period RYD station during the period from 1985 to 1994 were selected for analysis based on the following criteria: focal depths with a range between 7 and 89 km, body-wave magnitudes greater than 4.7, epicentral distances with a range from 8.8° to 26.5°, and back azimuthal coverage from 196° to 340°. Spectral analysis calculations were based on the comparison of the observed spectral ratios with those computed from theoretical P-wave motion obtained using the Thomson–Haskell matrix formulation for horizontally layered crustal models. The selection of the most suitable model was based on the identification of the theoretical model which exhibits the highest cross-correlation coefficient with the observed transfer function ratio. By comparing the spectral peak positions of the observed and theoretical values, the thickness and velocity can be resolved within 3 km and 1 km/s, respectively, of the observed values. The spectral analysis of long-period P-waves can detect a thin layer near the surface of about 1.6 km thick and a velocity contrast of about 10% with that of the underlying layer. A strong velocity gradient of about 0.05 km/s per km was found in the upper crust and 0.02 km/s per km in the lower crust. The derived crustal model is not unique due to the theoretical assumptions (horizontal layering, constant densities and velocities in each layer), quality of the data and complexities of the crustal structure. The crustal model suggests that the crust consists of five distinct layers. The upper crustal layer has a P-wave velocity of about 5.6 km/s and is about 1.6 km thick. The second layer has a velocity of about 6.2 km/s and is 10.2 km thick. The third layer shows a velocity of 6.6 km/s and is 6.8 km thick. The fourth layer has a velocity of about 6.8 km/s and is 12.3 km thick. The lower crustal layer has a velocity of about 7.5 km/s and is 9.3 km thick. The Mohorovicic discontinuity beneath the western Arabian platform indicates a velocity of 8.2 km/s of the upper mantle and 42 km depth.  相似文献   

18.
A nearly 500-km-long seismic profile with reflective and refractive wide-angle Ocean Bottom Seismometer (OBS) data and Multi-Channel Seismic (MCS) data was acquired across the northeastern continental margin of the South China Sea (SCS). The S-wave crustal structure and Vp/Vs ratios have been obtained based on a previously published P-wave model using the software RayInvr. Modeling of vertical- and horizontal-component OBS data yields information on the seismic crustal velocities, lithology, and geophysical properties along the OBS-2001 seismic profile. S-wave velocities in the model increase generally with depth but exhibit high spatial variability, particularly from the shelf to the upper slope of the northeastern SCS margin. Vp/Vs ratios also reveal significant lithological heterogeneity. Dongsha–Penghu Uplift (DPU) is a tectonic zone with a thicker crust than adjacent areas and a high magnetic anomaly. With a Vp/Vs of 1.74 and a P-wave velocity of 5.0–5.5 km/s, the DPU primarily consists of felsic volcanic rocks in the upper crust and is similar to the petrology of Zhejiang–Fujian volcanic provinces, which perhaps is associated with a Mesozoic volcanic arc. The ocean–continent transition (OCT) in the northeastern SCS is characterized by a thinning continental crust, volcanoes in the upper crust, and a high velocity layer (HVL) in the lower crust. The S-wave velocity and Vp/Vs ratio suggest that the HVL has a mafic composition that may originate from underplating of the igneous rocks beneath the passive rifted crust after the cessation of seafloor spreading.  相似文献   

19.
中国大陆科学钻探场址区的地壳速度结构特征   总被引:4,自引:0,他引:4  
为了深入研究大别—苏鲁超高压变质带的深部结构及空间展布特征, 进一步揭示该超高压变质形成的动力学过程, 在中国大陆科学钻探场址区进行了广角反射/折射地震测深调查.根据广角反射/折射地震测深的资料研究, 建立了中国大陆科学钻探场址区的地壳纵波速度结构.从纵向上来看, 研究区域的地壳结构可划分为上、中、下3层: 上地壳的速度小于6.2 0km/s, 厚10余km; 中地壳的速度为6.4 0km/s, 厚亦为10km左右; 下地壳的速度为6.6 0km/s.地壳厚度为31km左右, 且其地壳的平均速度为6.30km/s.上地壳中的速度倒转指示了超高压变质体在地壳内部的空间分布, 且超高压变质体在大陆科学钻探场址及其附近的下部呈现为一隆起形态.   相似文献   

20.
The Moho topography is strongly undulating in southern Scandinavia and northeastern Europe. A map of the depth to Moho shows similarities between the areas of the Teisseyre–Tornquist Zone (TTZ) in Poland and the Fennoscandian Border Zone (FBZ), which is partly coinciding with the Sorgenfrei–Tornquist Zone (STZ) in Denmark. The Moho is steeply dipping at these zones from a crustal thickness of approximately 32 km in the young Palaeozoic Platform and basin areas to approximately 45 km in the old Precambrian Platform and Baltic Shield. The Moho reflectivity (PMP waveform) in the POLONAISE'97 refraction/wide-angle seismic data from Poland and Lithuania is variable, ranging from ‘sharp’ to strongly reverberating signals of up to 2 s duration. There is little or no lower crustal wide-angle reflectivity in the thick Precambrian Platform, whereas lower crustal reflectivity in the thin Palaeozoic Platform is strongly reverberating, suggesting that the reflective lower crust and upper mantle is a young phenomena. From stochastic reflectivity modelling, we conclude that alternating high- and low-velocity layers with average thicknesses of 50–300 m and P-wave velocity variations of ±3–4% of the background velocity can explain the lower crustal reflectivity. Sedimentary layering affects the reflectivity of deeper layers significantly and must be considered in reflectivity studies, although the reverberations from the deeper crust cannot be explained by the sedimentary layering only. The reflective lower crust and upper mantle may correspond to a zone that has been intruded by mafic melts from the mantle during crustal extension and volcanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号