首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To elucidate the signature of isostatic and eustatic signals during a deglaciation period in pre‐Pleistocene times is made difficult because very little dating can be done, and also because glacial erosion surfaces, subaerial unconformities and subsequent regressive or transgressive marine ravinement surfaces tend to amalgamate or erode the deglacial deposits. How and in what way can the rebound be interpreted from the stratigraphic record? This study proposes to examine deglacial deposits from Late‐Ordovician to Silurian outcrops at the Algeria–Libya border, in order to define the glacio–isostatic rebound and relative sea‐level changes during a deglaciation period. The studied succession developed at the edge and over a positive palaeo‐relief inherited from a prograding proglacial delta that forms a depocentre of glaciogenic deposits. The succession is divided into five subzones, which depend on the topography of this depocentre. Six facies associations were determined: restricted marine (Facies Association 1); tidal channels (Facies Association 2); tidal sand dunes (Facies Association 3); foreshore to upper shoreface (Facies Association 4); lower shoreface (Facies Association 5); and offshore shales (Facies Association 6). Stratigraphic correlations over the subzones support the understanding of the depositional chronology and associated sea‐level changes. Deepest marine domains record a forced regression of 40 m of sea‐level fall resulting from an uplift caused by a glacio‐isostatic rebound that outpaces the early transgression. The rebound is interpreted to result in a multi‐type surface, which is interpreted as a regressive surface of marine erosion in initially marine domains and as a subaerial unconformity surface in an initially subaerial domain. The transgressive deposits have developed above this surface, during the progressive flooding of the palaeo‐relief. Sedimentology and high‐resolution sequence stratigraphy allowed the delineation of a deglacial sequence and associated sea‐level changes curve for the studied succession. Estimates suggest a relatively short (<10 kyr) duration for the glacio‐isostatic uplift and a subsequent longer duration transgression (4 to 5 Myr).  相似文献   

2.
The discovery of whale fossils from Eocene strata in the Fayum Depression has provoked interest in the life and lifestyle of early whales. Excellent outcrop exposure also affords the dataset to develop sedimentological and stratigraphic models within the Eocene strata. Previous work generally asserts that the thick, sand‐rich deposits of the Fayum Depression represent shoreface and barrier island successions with fine‐grained lagoonal and fluvial associations capping progradational successions. However, a complete absence of wave‐generated sedimentary structures, a preponderance of thoroughly bioturbated strata and increasingly proximal sedimentary successions upwards are contrary to accepted models of the local sedimentological and stratigraphic development. This study considers data collected from two Middle to Upper Eocene successions exposed in outcrop in the Wadi El‐Hitan and Qasr El‐Sagha areas of the Fayum Depression to determine the depositional affinities of Fayum strata. Based on sedimentological and ichnological data, five facies associations (Facies Association 1 to Facies Association 5) are identified. The biological and sedimentological characteristics of the reported facies associations indicate that the whale‐bearing sandstones (Facies Association 1) record distal positions in a large, open, quiescent marine bay that is abruptly succeeded by a bay‐margin environment (Facies Association 2). Upwards, marginal‐marine lagoonal and shallow‐bay parasequences (Facies Association 3) are overlain by thick deltaic distributary channel deposits (Facies Association 4). The capping unit (Facies Association 5) represents a transgressive estuarine depositional environment. The general stratigraphic evolution resulted from a regional, tectonically controlled second‐order cycle, associated with northward regression of the Tethys. Subordinate cycles (i.e. third‐order and fourth‐order cycles) are evidenced by several Glossifungites‐ichnofacies demarcated discontinuities, which were emplaced at the base of flooding surfaces. The proposed depositional models recognize the importance of identifying and linking ichnological data with physical–sedimentological observations. As such – with the exception of wave‐generated ravinement surfaces – earlier assertions of wave‐dominated sedimentation can be discarded. Moreover, this study provides important data for the recognition of (rarely reported) completely bioturbated sand‐dominated offshore to nearshore sediments (Facies Association 1) and affords excellent characterization of bioturbated inclined heterolithic stratification of deltaic deposits. Another outcome of the study is the recognition that the whales of the Fayum Depression are restricted to the highstand systems tracts, and lived under conditions of low depositional energy, low to moderate sedimentation rates, and (not surprisingly) in fully marine waters characterized by a high biomass.  相似文献   

3.
Outcrop-based sequence stratigraphic analysis and palynological biofacies were used to define depositional sequences and their bounding surfaces, and build a sequence stratigraphic model for the Upper Cretaceous succession of the Afikpo Sub-basin. Four unconformity-bounded third-order depositional sequences were identified. Sequence 1 comprises the Nkporo Formation and is subdivided into lowstand system tract (LST) representing an incised valley fill and transgressive systems tract (TST) consisting of estuarine and marine shales and mudstones. The base of the sequence is an angular unconformity correlated to the 77.5 Ma sequence boundary (SB) and the maximum flooding surface (MFS) is dated at 76 Ma. Sequence 2 is diachronous and straddles the lithostratigraphic boundary of the Nkporo and Mamu formations. The upper SB is dated at 71 Ma while associated MFS is dated at 73.5 Ma. Sequence 3 consists of the upper Mamu Formation and the Ajali Formation. The upper SB of sequence 3 is at 68 Ma while the MFS is dated at 69.8 Ma. Sequence 4 is the topmost depositional sequence belonging to the Nsukka Formation. The upper SB is placed at 66.5 Ma. The MFS within this sequence is dated at 67.8 Ma. The sequences encompass from tidally influenced bay head delta and central estuarine environments to coastal and shallow marine shelf environments. Stratigraphic architecture and facies types show that sequence development was controlled to a great extent by eustatic sea level variations though differential subsidence rates encouraged differential rates of sediment supply and rates of sea level change along different segments of the shoreline.  相似文献   

4.
Upper Carboniferous Coal Measures strata have been interpreted traditionally in terms of cyclothems bounded by marine flooding surfaces (marine bands) and coal seams. Correlation of such cyclothems in an extensive grid of closely spaced coal exploration boreholes provides a robust stratigraphic framework in which to study the Lower Coal Measures (Namurian C–Westphalian A) of the Ruhr district, north-west Germany. Three distinct types of cyclothem are recognized, based on their bounding surfaces and internal facies architecture. (1) Type 1 cyclothems are bounded by marine bands. Each cyclothem comprises a thick (30–80 m), regionally extensive, coarsening-upward delta front succession of interbedded shales, siltstones and sandstones, which may be deeply incised by a major fluvial sandstone complex. The delta front succession is capped by a thin (<1 m), regionally extensive coal seam and an overlying marine band defining the top of the cyclothem. (2) Type 2 cyclothems are bounded by thick (≈1 m), regionally extensive coal seams with few splits. The basal part of a typical cyclothem comprises a thick (15–50 m), widespread, coarsening-upward delta front or lake infill succession consisting of interbedded shales, siltstones and sandstones. Networks of major (>5 km wide, 20–40 m thick), steep-sided, multistorey fluvial sandstone complexes erode deeply into and, in some cases, through these successions and are overlain by the coal seam defining the cyclothem top. (3) Type 3 cyclothems are bounded by regionally extensive coal seam groups, characterized by numerous seam splits on a local (0·1–10 km) scale. Intervening strata vary in thickness (15–60 m) and are characterized by strong local facies variability. Root-penetrated, aggradational floodplain heteroliths pass laterally into single-storey fluvial channel-fill sandstones and coarsening-upward, shallow lake infill successions of interbedded shales, siltstones and sandstones over distances of several hundred metres to a few kilometres. Narrow (<2 km) but thick (20–50 m) multistorey fluvial sandstone complexes are rare, but occur in a few type 3 cyclothems. Several cyclothems are observed to change character from type 1 to type 2 and from type 2 to type 3 up the regional palaeoslope. Consequently, we envisage a model in which each cyclothem type represents a different palaeogeographic belt within the same, idealized delta system, subject to the same allogenic and autogenic controls on facies architecture. Type 1 cyclothems are dominated by deltaic shorelines deposited during a falling stage and lowstand of sea level. Type 2 cyclothems represent the coeval lower delta plain, which was deeply eroded by incised valleys that fed the falling stage and lowstand deltas. Type 3 cyclothems comprise mainly upper delta plain deposits in which the allogenic sea-level control was secondary to autogenic controls on facies architecture. The marine bands, widespread coals and coal seam groups that bound these three cyclothem types record abandonment of the delta system during periods of rapid sea-level rise. The model suggests that the extant cyclothem paradigm does not adequately describe the detailed facies architecture of Lower Coal Measures strata. Instead, these architectures may be better understood within a high-resolution stratigraphic framework incorporating sequence stratigraphic key surfaces, integrated with depositional models derived from analogous Pleistocene–Holocene fluvio-deltaic strata.  相似文献   

5.
The influence of palaeodrainage characteristics, palaeogeography and tectonic setting are rarely considered as controls on stratigraphic organization in palaeovalley or incised valley systems. This study is an examination of the influence of source region vs. downstream base level controls on the sedimentary architecture of a set of bedrock-confined palaeovalleys developed along the distal margin of the Alpine foreland basin in south-eastern France. Three distinct facies associations are observed within the palaeovalley fills. Fluvial facies association A is mainly dominated by poorly sorted, highly disorganized, clast-to-matrix-supported cobble-to-boulder conglomerates that are interpreted as streamflood deposits. Facies association B comprises mainly yellow siltstones and is interpreted as recording deposition in an estuarine basin environment. Estuarine marine facies association C comprises interstratified estuarine siltstones and clean, well-sorted washover sandstones. The sedimentary characteristics of the valley fill successions are related to the proximity of depositional sites to sediment source areas. Palaeovalleys located proximal to structurally controlled basement palaeohighs are entirely dominated by coarse fluvial streamflood deposits. In contrast, distal palaeovalley segments, which are located several kilometres downstream, contain successions showing upward transition from coarse fluvial facies into estuarine central basin fines, and finally into estuarine-marginal marine facies. Facies distributions suggest that the fluvial deposits form wedge-shaped, downstream-thinning sediment bodies, whereas the estuarine deposits form an upstream-thinning wedge. The vertical stacking of fluvial to estuarine to marginal marine depositional environments records the fluvial aggradation and subsequent transgression of relatively small bedrock-confined river valleys, which drained a rugged, upland terrain. Facies geometries suggest that a fluvial sediment wedge initially prograded downvalley, in response to high bed load sediment yields. Subsequently, palaeovalleys became drowned during the passage of a marine transgression, with the establishment of estuarine conditions. Initial fluvial aggradation and subsequent marine flooding of the palaeovalleys is a consequence of the interaction of high local rates of sediment supply and relative sea-level rise driven by flexural subsidence of the basin.  相似文献   

6.
The Campanian Cliff House Formation represents a series of individually progradational shoreface tongues preserved in an overall landward-stepping system. In the Mancos Canyon area, the formation consists of four, 50- to 55-m-thick and 10- to 20-km-wide sandstone tongues, which pinch out landwards into lower coastal plain and lagoonal deposits of the Upper Menefee Formation and seawards into offshore shales of the Lewis Shale Formation. Photogrammetric mapping of lithofacies along the steep and well-exposed canyon walls was combined with sedimentary facies analysis and mapping of the detailed facies architecture. Two major facies associations have been identified, one comprising the mostly muddy and organic-rich facies of lagoonal and lower coastal plain origin and one comprising the sandstone-dominated facies of shoreface origin. Key stratigraphic surfaces were identified by combining the mapped geometry of the lithofacies units with the interpretation of depositional processes. The stratigraphic surfaces (master ravinement surface, shoreface/coastal plain contact, transgressive surface, maximum flooding surface and the sequence boundary) allow each major sandstone tongue to be divided into a simple sequence, consisting of a basal transgressive system tract (TST) overlain by a highstand system tract (HST). Within each sandstone tongue, a higher frequency cyclicity is evident. The high-frequency cycles show a complex stacking pattern development and are commonly truncated in the downdip direction by surfaces of regressive marine erosion. The complexities of the Cliff House sandstone tongues are believed to reflect changes in the rate of sea-level rise combined with the responses of the depositional system to these changes. Synsedimentary compaction, causing a thickness increase in the sandstone tongues above intervals of previously uncompacted lagoonal/coastal plain sediments, also played a role. This study of the facies architecture, geometry and sequence stratigraphy of the Cliff House Formation highlights the fact that there may be some problems in applying conventional sequence stratigraphical methods to landward-stepping systems in general. These difficulties stem from the fact that no single stratigraphic surface can easily be identified and followed from the non-marine to the fully marine realm (i.e. from the landward to the basinward pinch-out of the sandstone tongues). In addition, the effects of synsedimentary compaction and changes in the shoreface dynamics are not easily recognized in limited data sets such as from the subsurface.  相似文献   

7.
Gamma‐ray curves from surface outcrops together with U–Pb SHRIMP zircon dating are used to redefine the evolution of a Palaeoproterozoic sandy dolostone succession from northern Australia. This case history indicates that gamma‐ray logging of surface sections should accompany lithostratigraphic logging or an inadequate interpretation of stratigraphic evolution is a likely outcome. The 1200 m‐thick Nathan Group from the McArthur River area had previously been interpreted as a more‐or‐less continuous package of carbonates deposited in lacustrine and associated shallow‐water environments. Now it is seen to comprise the preserved remnants of three truncated, second‐order supersequences—the Lawn, Wide and Doom Supersequences—each a few hundred metres thick and each deposited over a time period of a few million years. These supersequences are separated by major stratigraphic breaks each approaching probably 10 million years duration. Each supersequence comprises several third‐order sequences which themselves contain higher‐order cycles. These were deposited in a series of continental, shoreline, and inner to outer carbonate platform environments. Transgressive, high‐energy, fluvial to marginal marine, mixed clastic‐carbonate facies dominate most of the sequences. The middle, Wide Supersequence, however, preserves deeper water (mostly sub‐storm‐wave‐base) stromatolitic facies in one sequence, and storm‐reworked clastics in another. These are interpreted as condensed intervals deposited around their respective maximum flooding surfaces and are succeeded by regressive facies that probably represent highstand systems tracts. New correlations between these 1615–1575 Ma sandy carbonate successions of the McArthur Basin (Amos, Balbirini and Dungaminnie Formations) and time‐equivalent largely clastic successions in the Lawn Hill area (Lawn Hill and Doomadgee Formations), some 400 km to the southeast, are proposed.  相似文献   

8.
This work presents the first detailed facies analysis of the upper Nyalau Formation exposed around Bintulu, Sarawak, Malaysia. The Lower Miocene Nyalau Formation exposures in NW Sarawak represent one of the closest sedimentological outcrop analogues to the age equivalent, hydrocarbon-bearing, offshore deposits of the Balingian Province. Nine types of facies associations are recognised in the Nyalau Formation, which form elements of larger-scale facies successions. Wave-dominated shoreface facies successions display coarsening upward trends from Offshore, into Lower Shoreface and Upper Shoreface Facies Associations. Fluvio-tidal channel facies successions consist of multi-storey stacks of Fluvial-Dominated, Tide-Influenced and Tide-Dominated Channel Facies Associations interbedded with minor Bay and Mangrove Facies Associations. Estuarine bay facies successions are composed of Tidal Bar and Bay Facies Associations with minor Mangrove Facies Associations. Tide-dominated delta facies successions coarsen upward from an Offshore into the Tidal Bar Facies Association. The Nyalau Formation is interpreted as a mixed wave- and tide-influenced coastal depositional system, with an offshore wave-dominated barrier shoreface being incised by laterally migrating tidal channels and offshore migrating tidal bars. Stratigraphic successions in the Nyalau Formation form repetitive high frequency, regressive–transgressive cycles bounded by flooding surfaces, consisting of a basal coarsening upward, wave-dominated shoreface facies succession (representing a prograding barrier shoreface and/or beach-strandplain) which is sharply overlain by fluvio-tidal channel, estuarine bay or tide-dominated delta facies successions (representing more inshore, tide-influenced coastal depositional environments). An erosion surface separates the underlying wave-dominated facies succession from overlying tidal facies successions in each regressive–transgressive cycle. These erosion surfaces are interpreted as unconformities formed when base level fall resulted in deep incision of barrier shorefaces. Inshore, fluvio-tidal successions above the unconformity display upward increase in marine influence and are interpreted as transgressive incised valley fills.  相似文献   

9.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   

10.
ABSTRACT Stratigraphy presupposes a hierarchy of scales of spatial organization supplemented at the small‐scale end by sedimentological concepts (beds, bed sets and bed cosets) and, at larger spatial scales, by sequence‐stratigraphic concepts (systems tracts, parasequences, sequences). Between these two end‐members are intermediate‐scale bodies described as ‘lithofacies’, or simply ‘facies’. A more restricted concept, granulometric facies, can be described in terms of horizontal grain‐size gradients (‘facies change’) and cyclic vertical grain‐size gradients (‘stratification’). Assemblages of facies so defined (also called depositional systems) are not random, but occur in a limited suite of patterns. Such assemblages may be linked to two classes of bounding surfaces, a source diastem (the immediate source of the sediment) and a surface of closure (if preserved), between which is sandwiched a transgressive or regressive, basinward‐fining facies succession. Systems‐bounding surfaces are notably more continuous than internal (gradational) facies boundaries. By thus restricting the definition of a facies assemblage (depositional system), it is possible to describe the Quaternary of the Virginia coast with as few as 12 systems. Depositional systems in the Quaternary of the Virginia coast are allometric, in that any system can be derived from any other by plastic expansion of one or more facies relative to another, or by simple symmetry operations. Self‐similarity prevails across this intermediate scale of stratigraphic organization. Facies assemblages (depositional systems) consist of event beds, which themselves have erosional basal boundaries and internal successions of microfacies. At larger spatial scales, depositional systems are repeated, either autocyclic repetitions forced by processes within the basin of deposition or allocyclic repetitions, as ‘parasequences’ and high‐frequency sequences. In the Virginia Quaternary, systems architecture is compatible with sequence architecture and nests conformably within its framework, but analysis of systems architecture reveals rules beyond those governing sequence architecture.  相似文献   

11.
Sequence stratigraphical analysis was applied to the Upper Carboniferous–Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.  相似文献   

12.
A thick Upper Ordovician shelf sequence was developed in the northern Gondwana margin (southernmost exposures of the Central Iberian Zone). Integrated sedimentologic and stratigraphic studies allow distinction between pedogenetic processes (Facies association C), shoreline deposits (Facies association S), proximal to distal shelf (Facies association L, H1, H2, H3) and outer shelf zone or open marine environments (Facies association M, Mo). The vertical distribution of facies is characterized by the presence of regressive high frequency sequences (partial shelf progradational sequences), affected by the presence of catastrophic phenomena (storms). These sequences, in turn, can be classified into higher‐order transgressive (T)–regressive (R) cycles. Two second‐order T‐R megacycles (MC. Ord‐2 and MC. Sil‐1) limited by a major sequence boundary are identified. Traces of emersion (palaeokarsts and palaeosols) are detected along the sequence boundary, and these are related to the eustatic sea‐level fall that occurred during the Ashgillian. The MC. Ord‐2 and MC. Sil‐1 megacycles extend respectively from the Middle Arenig to the Ashgillian and from Late Ashgillian to the Late Llandovery. Major transgressive peaks occurred at the Llanvirn and at the Middle Llandovery (Aeronian). The vertical distribution of the facies delineates successive genetically related units in relation to relative sea‐level changes. Within the upper part of the first megacycle (MC. Ord‐2) six third‐order cycles are proposed (Lla‐1, Car‐1, Car‐2, Car‐3, Car‐4, Ash‐1), in which a transgressive and a regressive interval can be distinguished. Within the lower part of the second megacycle (MC. Sil‐1) two transgressive–regressive third‐order cycles are proposed (Lly‐1, Lly‐2). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
有机相研究及其在盆地分析中的应用   总被引:14,自引:0,他引:14  
郝芳  陈建渝 《沉积学报》1994,12(4):77-86
有机相是具有一定丰度和特定成因类型的有机质的地层单元,决定有机相类型的最重要参数是干酪根的成因类型。为了反映沉积盆地中有机相的时空分布,我们提出了有机相组合和盆地有机充填序列等新概念。有机相及有机相层序、有机充填序列和有机相组合不仅是预测和在三维空间确定生油岩的分布、预测主力生油岩的排烃期和排出产物的组成的有效工具,而且可以弥补以骨架砂岩体为主要研究对象的沉积学分析的不足,在确定层序界线或不整合面的位且、研究盆地的构造沉降和沉积充填史等方面发挥重要作用。  相似文献   

14.
Well‐exposed Mesozoic sections of the Bahama‐like Adriatic Platform along the Dalmatian coast (southern Croatia) reveal the detailed stacking patterns of cyclic facies within the rapidly subsiding Late Jurassic (Tithonian) shallow platform‐interior (over 750 m thick, ca 5–6 Myr duration). Facies within parasequences include dasyclad‐oncoid mudstone‐wackestone‐floatstone and skeletal‐peloid wackestone‐packstone (shallow lagoon), intraclast‐peloid packstone and grainstone (shoal), radial‐ooid grainstone (hypersaline shallow subtidal/intertidal shoals and ponds), lime mudstone (restricted lagoon), fenestral carbonates and microbial laminites (tidal flat). Parasequences in the overall transgressive Lower Tithonian sections are 1–4·5 m thick, and dominated by subtidal facies, some of which are capped by very shallow‐water grainstone‐packstone or restricted lime mudstone; laminated tidal caps become common only towards the interior of the platform. Parasequences in the regressive Upper Tithonian are dominated by peritidal facies with distinctive basal oolite units and well‐developed laminate caps. Maximum water depths of facies within parasequences (estimated from stratigraphic distance of the facies to the base of the tidal flat units capping parasequences) were generally <4 m, and facies show strongly overlapping depth ranges suggesting facies mosaics. Parasequences were formed by precessional (20 kyr) orbital forcing and form parasequence sets of 100 and 400 kyr eccentricity bundles. Parasequences are arranged in third‐order sequences that lack significant bounding disconformities, and are evident on accommodation (Fischer) plots of cumulative departure from average cycle thickness plotted against cycle number or stratigraphic position. Modelling suggests that precessional sea‐level changes were small (several metres) as were eccentricity sea‐level changes (or precessional sea‐level changes modulated by eccentricity), supporting a global, hot greenhouse climate for the Late Jurassic (Tithonian) within the overall ‘cool’ mode of the Middle Jurassic to Early Cretaceous.  相似文献   

15.
The 600 m thick prograding sedimentary succession of Wagad ranging in age from Callovian to Early Kimmeridgian has been divided into three formations namely, Washtawa, Kanthkot and Gamdau. Present study is confined to younger part of the Washtawa Formation and early part of the Kanthkot Formation exposed around Kanthkot, Washtawa, Chitrod and Rapar. The depositional architecture and sedimentation processes of these deposits have been studied applying sequence stratigraphic context. Facies studies have led to identification of five upward stacking facies associations (A, B, C, D, and E) which reflect that deposition was controlled by one single transgressive — regressive cycle. The transgressive deposit is characterized by fining and thinning upward succession of facies consisting of two facies associations: (1) Association A: medium — to coarse-grained calcareous sandstone — mudrocks alternations (2) Association B: fine-grained calcareous sandstone — mudrocks alternations. The top of this association marks maximum flooding surface as identified by bioturbational fabrics and abundance of deep marine fauna (ammonites). Association A is interpreted as high energy transgressive deposit deposited during relative sea level rise. Whereas, facies association B indicates its deposition in low energy marine environment deposited during stand-still period with low supply of sediments. Regressive sedimentary package has been divided into three facies associations consisting of: (1) Association C: gypsiferous mudstone-siltstone/fine sandstone (2) Association D: laminated, medium-grained sandstone — siltstone (3) Association E: well laminated (coarse and fine mode) sandstone interbedded with coarse grained sandstone with trough cross stratification. Regressive succession of facies association C, D and E is interpreted as wave dominated shoreface, foreshore to backshore and dune environment respectively. Sequence stratigraphic concepts have been applied to subdivide these deposits into two genetic sequences: (i) the lower carbonate dominated (25 m) transgressive deposits (TST) include facies association A and B and the upper thick (75m) regressive deposits (HST) include facies association C, D and E. The two sequences are separated by maximum flooding surface (MFS) identified by sudden shift in facies association from B to C. The transgressive facies association A and B represent the sediments deposited during the syn-rift climax followed by regressive sediments comprising association C, D and E deposited during late syn-rift stage.  相似文献   

16.
A thick Maastrichtian‐Ypresian succession, dominated by marine siliciclastic and carbonate deposits of the regionally recognized Nile Valley and Garra El‐Arbain facies associations, is exposed along the eastern escarpment face of Kharga Oasis, located in the Western Desert of Egypt. The main objectives of the present study are: (i) to establish a detailed biostratigraphic framework; (ii) to interpret the depositional environments; and (iii) to propose a sequence stratigraphic framework in order to constrain the palaeogeographic evolution of the Kharga sub‐basin during the Maastrichtian‐Ypresian time interval. The biostratigraphic analysis suggests the occurrence of 10 planktonic zones; two in the Early Maastrichtian (CF8b and CF7), four in the Palaeocene (P2, P3, P4c and P5) and four in the Early Eocene (E1, E2, E3 and E4). Recorded zonal boundaries and biostratigraphic zones generally match with those proposed elsewhere in the region. The stratigraphic succession comprises seven third‐order depositional sequences which are bounded by unconformities and their correlative conformities which can be correlated within and outside Egypt. These depositional sequences are interpreted as the result of eustatic sea‐level changes coupled with local tectonic activities. Each sequence contains a lower retrogradational parasequence set bounded above by a marine‐flooding surface and an upper progradational parasequence set bounded above by a sequence boundary. Parasequences within parasequence sets are stacked in landward‐stepping and seaward‐stepping patterns indicative of transgressive and highstand systems tracts, respectively. Lowstand systems tracts were not developed in the studied sections, presumably due to the low‐relief ramp setting. The irregular palaeotopography of the Dakhla Basin, which was caused by north‐east to south‐west trending submerged palaeo‐highs and lows, together with the eustatic sea‐level fluctuations, controlled the development and location of the two facies associations in the Kharga Oasis, the Nile Valley (open marine) and Garra El‐Arbain (marginal marine).  相似文献   

17.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

18.
The upper portion of the Cuyo Group in the Zapala region, south‐eastern Neuquén Basin (Western Argentina), encompasses marine and transitional deposits (Lajas Formation) overlain by alluvial rocks (Challacó Formation). The Challacó Formation is covered by the Mendoza Group above a second‐order sequence boundary. The present study presents the stratigraphic framework and palaeophysiographic evolution of this Bajocian to Eo‐Calovian interval. The studied succession comprises the following genetic facies associations: (i) offshore and lower shoreface–offshore transition; (ii) lower shoreface; (iii) upper shoreface; iv) intertidal–subtidal; (v) supratidal–intertidal; (vi) braided fluvial to delta plain; (vii) meandering river; and (viii) braided river. The stratigraphic framework embraces four third‐order depositional sequences (C1 to C4) whose boundaries are characterized by the abrupt superposition of proximal over distal facies associations. Sequences C1 to C3 comprise mostly littoral deposits and display well‐defined, small‐scale transgressive–regressive cycles associated with fourth‐order depositional sequences. Such high‐frequency cycles are usually bounded by ravinement surfaces associated with transgressive lags. At last, the depositional sequence C4 delineates an important tectonic reorganization probably associated with an uplift of the Huincul Ridge. This is suggested by an inversion of the transport trend, north‐westward during the deposition of C1 to C3 depositional sequences (Lajas Formation) to a south‐west trend during the deposition of the braided fluvial strata related to the C4 depositional sequence (Challacó Formation).  相似文献   

19.
Due to difficulties in correlating aeolian deposits with coeval marine facies, sequence stratigraphic interpretations for arid coastal successions are debated and lack a unifying model. The Pennsylvanian record of northern Wyoming, USA, consisting of mixed siliciclastic–carbonate sequences deposited in arid, subtropical conditions, provides an ideal opportunity to study linkages between such environments. Detailed facies models and sequence stratigraphic frameworks were developed for the Ranchester Limestone Member (Amsden Formation) and Tensleep Formation by integrating data from 16 measured sections across the eastern side of the Bighorn Basin with new conodont biostratigraphic data. The basal Ranchester Limestone Member consists of dolomite interbedded with thin shale layers, interpreted to represent alternating deposition in shallow marine (fossiliferous dolomite) and supratidal (cherty dolomite) settings, interspersed with periods of exposure (pedogenically modified dolomites and shales). The upper Ranchester Limestone Member consists of purple shales, siltstones, dolomicrites and bimodally cross‐bedded sandstones in the northern part of the basin, interpreted as deposits of mixed siliciclastic–carbonate tidal flats. The Tensleep Formation is characterized by thick (3 to 15 m) aeolian sandstones interbedded with peritidal heteroliths and marine dolomites, indicating cycles of erg accumulation, preservation and flooding. Marine carbonates are unconformably overlain by peritidal deposits and/or aeolian sandstones interpreted as lowstand systems tract deposits. Marine transgression was often accompanied by the generation of sharp supersurfaces. Lags and peritidal heteroliths were deposited during early stages of transgression. Late transgressive systems tract fossiliferous carbonates overlie supersurfaces. Highstand systems tract deposits are lacking, either due to non‐deposition or post‐depositional erosion. The magnitude of inferred relative sea‐level fluctuations (>19 m), estimated by comparison with analogous modern settings, is similar to estimates from coeval palaeotropical records. This study demonstrates that sequence stratigraphic terminology can be extended to coastal ergs interacting with marine environments, and offers insights into the dynamics of subtropical environments.  相似文献   

20.
Facies models for regressive, tide‐influenced deltaic systems are under‐represented in the literature compared with their fluvial‐dominated and wave‐dominated counterparts. Here, a facies model is presented of the mixed, tide‐influenced and wave‐influenced deltaic strata of the Sego Sandstone, which was deposited in the Western Interior Seaway of North America during the Late Cretaceous. Previous work on the Sego Sandstone has focused on the medial to distal parts of the outcrop belt where tides and waves interact. This study focuses on the proximal outcrop belt, in which fluvial and tidal processes interact. Five facies associations are recognized. Bioturbated mudstones (Facies Association 1) were deposited in an offshore environment and are gradationally overlain by hummocky cross‐stratified sandstones (Facies Association 2) deposited in a wave‐dominated lower shoreface environment. These facies associations are erosionally overlain by tide‐dominated cross‐bedded sandstones (Facies Association 4) interbedded with ripple cross‐laminated heterolithic sandstones (Facies Association 3) and channelized mudstones (Facies Association 5). Palaeocurrent directions derived from cross‐bedding indicate bidirectional currents which are flood‐dominated in the lower part of the studied interval and become increasingly ebb‐directed/fluvial‐directed upward. At the top of the succession, ebb‐dominated/fluvial‐dominated, high relief, narrow channel forms are present, which are interpreted as distributary channels. When distributary channels are abandoned they effectively become estuaries with landward sediment transport and fining trends. These estuaries have sandstones of Facies Association 4 at their mouth and fine landward through heterolithic sandstones of Facies Association 3 to channelized mudstones of Facies Association 5. Therefore, the complex distribution of relatively mud‐rich and sand‐rich deposits in the tide‐dominated part of the lower Sego Sandstone is attributed to the avulsion history of active fluvial distributaries, in response to a subtly expressed allogenic change in sediment supply and relative sea‐level controls and autocyclic delta lobe abandonment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号