首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Factors that could produce the statistical relationship observed between the duration of transient processes on the Sun and the power of corresponding disturbances of the interplanetary medium are investigated. Uniform data on the soft X-radiation of more than 50000 flares made it possible to study their number distribution according to duration in four ranges of event power. It proved possible to identify three event types: impulse flares of a total duration of less than 30 min, typical (two-ribbon) flares of less than one to two hours' duration, and very prolonged events, which include phenomena in activity complexes and dynamical flares. These results are in good agreement with the expected phenomena durations, which were determined from the energy balance in the flare source of the soft X-radiation. In particular, while there is a free leakage of the generated hot plasma in impulse flares, heating near a coronal-loop apex becomes significant in two-ribbon flares and determines the entire process in prolonged flares. A comparison of the data on soft and hard X-rays demonstrated that fairly powerful impulses are as a rule followed by the formation of a coronal-loop system. This process of the formation of a flare-loop system often generates a shock wave, which gives rise to coronal mass ejections (CMEs). The possibility is discussed that, in the most prolonged flares, CMEs often lead to new flare formations, the ejection of material from coronal levels continuing and increasing disturbances in interplanetary space for a lengthy period of time.  相似文献   

2.
We present the study of 20 solar flares observed by “Solar X-ray Spectrometer (SOXS)” mission during November 2003 to December 2006 and found associated with coronal mass ejections (CMEs) seen by LASCO/SOHO mission. In this investigation, X-ray emission characteristics of solar flares and their relationship with the dynamics of CMEs have been presented. We found that the fast moving CMEs, i.e., positive acceleration are better associated with short rise time (< 150 s) flares. However, the velocity of CMEs increases as a function of duration of the flares in both 4.1–10 and 10–20 keV bands. This indicates that the possibility of association of CMEs with larger speeds exists with long duration flare events. We observed that CMEs decelerate with increasing rise time, decay time and duration of the associated X-ray flares. A total 10 out of 20 CMEs under current investigation showed positive acceleration, and 5 of them whose speed did not exceed 589 km/s were associated with short rise time (< 150 s) and short duration (< 1300 s) flares. The other 5 CMEs were associated with long duration or large rise time flare events. The unusual feature of all these positive accelerating CMEs was their low linear speed ranging between 176 and 775 km/s. We do not find any significant correlation between X-ray peak intensity of the flares with linear speed as well as acceleration of the associated CMEs. Based on the onset time of flares and associated CMEs within the observing cadence of CMEs by LASCO, we found that in 16 cases CME preceded the flare by 23 to 1786 s, while in 4 cases flare occurred before the CME by 47 to 685 s. We argue that both events are closely associated with each other and are integral parts of one energy release system.  相似文献   

3.
H.A. Dal  S. Evren 《New Astronomy》2012,17(4):399-410
In this study, we present the unpublished flare data collected from 222 flares detected in the B band observations of five stars and the results derived by statistical analysis and modeling of these data. Six basic properties have been found with a statistical analysis method applied to all models and analyses for the flares detected in the B band observation of UV Ceti type stars. We have also compared the U and B bands with the analysis results. This comparison allowed us to evaluate the methods used in the analyses. The analyses provided the following results. (1) The flares were separated into two types, fast and slow flares. (2) The mean values of the equivalent durations of the slow and the fast flares differ by a factor of 16.2 ± 3.7. (3) Regardless of the total flare duration, the maximum flare energy can reach a different Plateau level for each star. (4) The Plateau values of EV Lac and EQ Peg are higher than the others. (5) The minimum values of the total flare duration increase toward the later spectral types. This value is called the Half-Life value in models. (6) Both the maximum flare rise times and the total flare duration obtained from the observed flares decrease toward the later spectral types.  相似文献   

4.
We perform a statistical analysis on 157 M-class soft X-ray flares observed during 1997?–?2014 with and without deca-hectometric (DH) type II radio bursts aiming at the reasons for the non-occurrence of DH type II bursts in certain events. All the selected events are associated with halo Coronal Mass Ejections (CMEs) detected by the Solar and Heliospheric Observatory (SOHO) / Large Angle Spectrometric and COronograph (LASCO). Out of 157 events, 96 (61%; “Group I”) events are associated with a DH type II burst observed by the Radio and Plasma Wave (WAVES) experiment onboard the Wind spacecraft and 61 (39%; “Group II”) events occur without a DH type II burst. The mean CME speed of Group I is \(1022~\mbox{km}/\mbox{s}\) and that of Group II is \(647~\mbox{km}/\mbox{s}\). It is also found that the properties of the selected M-class flares such as flare intensity, rise time, duration and decay time are greater for the DH associated flares than the non-DH flares. Group I has a slightly larger number (56%) of western events than eastern events (44%), whereas Group II has a larger number of eastern events (62%) than western events (38%). We also compare this analysis with the previous study by Lawrance, Shanmugaraju, and Vr?nak (Solar Phys. 290, 3365L, 2015) concerning X-class flares and confirm that high-intensity flares (X-class and M-class) have the same trend in the CME and flare properties. Additionally we consider aspects like acceleration and the possibility of CME-streamer interaction. The average deceleration of CMEs with DH type II bursts is weaker (\(a = - 4.39\mbox{ m}/\mbox{s}^{2}\)) than that of CMEs without a type II burst (\(a = -12.21\mbox{ m}/\mbox{s}^{2}\)). We analyze the CME-streamer interactions for Group I events using the model proposed by Mancuso and Raymond (Astron. Astrophys. 413, 363, 2004) and find that the interaction regions are the most probable source regions for DH type II radio bursts.  相似文献   

5.
We present a statistical study of the characteristics of type-II radio bursts observed in the metric (m) and deca-hectometer (DH) wavelength range during 1997–2008. The collected events are divided into two groups: Group I contains the events of m-type-II bursts with starting frequency ≥ 100 MHz, and group II contains the events with starting frequency of m-type-II radio bursts < 100 MHz. We have analyzed both samples considering three different aspects: i) statistical properties of type-II bursts, ii) statistical properties of flares and CMEs associated with type-II bursts, and iii) time delays between type-II bursts, flares, and CMEs. We find significant differences in the properties of m-type-II bursts in duration, bandwidth, drift rate, shock speed and delay between m- and DH-type-II bursts. From the timing analysis we found that the majority of m-type-II bursts in both groups occur during the flare impulsive phase. On the other hand, the DH-type-II bursts in both groups occur during the decaying phase of the associated flares. Almost all m-DH-type-II bursts are found to be associated with CMEs. Our results indicate that there are two kinds of shock in which group I (high frequency) m-type-II bursts seem to be ignited by flares whereas group II (low frequency) m-type-II bursts are CME-driven.  相似文献   

6.
The concept of homology, introduced by Ellison, Mc Kenna, and Rceid (1960) for optical flares, can be extended to flare-associated radio events. Successive flares within the same centre of activity sometimes produce radio events that are remarkably similar. The similarity amounts to the fact that they extend over about the same range(s) in frequency, producing at each frequency responses of comparable intensity and duration. On some occasions the intensity curves at individual frequencies show even detailed resemblance. The occurrence of homologous radio events is commonly restricted to periods of less than 48 hours.Without being homologous, radio events that occur in the same centre of activity may present a common characteristic that is typical for that centre. Two such characteristics are (1) the production of radio responses at centimetric, decimetric and metric frequencies, and (2) the impulsiveness of microwave outbursts. The distribution of time intervals during which such bursts occur is compared with the same distribution for homologous events (Figure 3).  相似文献   

7.
Using data from the Geostationary Operational Environmental Satellites (GOES) spacecraft in the 1?–?8 Å wavelength range for Solar Cycles 23, 24, and part of Cycles 21 and 22, we compare mean temporal parameters (rise and decay times, and duration) and the proportion of impulsive short-duration events (SDE) and gradual long-duration events (LDE) among C- and ≥?M1.0-class flares. It is found that the fraction of the SDE ≥?M1.0-class flares (including spikes) in Cycle 24 exceeds that in Cycle 23 in all three temporal parameters at the maximum phase and in the decay time during the ascending cycle phase. However, Cycles 23 and 24 barely differ in the fraction of the SDE C-class flares. The temporal parameters of SDEs, their fraction, and consequently the relationship between the SDE and LDE flares do not remain constant, but reveal regular changes within individual cycles and during the transition from one cycle to another. In all phases of all four cycles, these changes have the character of pronounced, large-amplitude “quasi-biennial” oscillations (QBOs). In different cycles and at the separate phases of individual cycles, such QBOs are superimposed on various systematic trends displayed by the analyzed temporal flare parameters. In Cycle 24, the fraction of the SDE ≥?M1.0-class flares from the N- and S-hemispheres displays the most pronounced synchronous QBOs. The QBO amplitude and general variability of the intense ≥?M1.0-class flares almost always markedly exceeds those of the moderate C-class flares. The ordered quantitative and qualitative variations of the flare type revealed in the course of the solar cycles are discussed within the framework of the concept that the SDE flares are associated mainly with small sunspots (including those in developed active regions) and that small and large sunspots behave differently during cycles and form two distinct populations.  相似文献   

8.
Over the last few years, the pre-decreases or pre-increases of the cosmic-ray intensity observed before a Forbush decrease, called the precursor effect and registered by the worldwide neutron monitor network, have been investigated for different cases of intense events. The Forbush decreases presented in this particular study were chosen from a list of events that occurred in the time period 1967?–?2006 and were characterized by an enhanced first harmonic of cosmic-ray anisotropy prior to the interplanetary disturbance arrival. The asymptotic longitudinal cosmic-ray distribution diagrams for the events under consideration were studied using the “Ring of Stations” method, and data on solar flares, solar-wind speed, geomagnetic indices, and interplanetary magnetic field were analyzed in detail. The results revealed that the use of this method allowed the selection of a large number of events with well-defined precursors, which could be separated into at least three categories, according to duration and longitudinal zone. Finally, this analysis showed that the first harmonic of cosmic-ray anisotropy could serve as an adequate tool in the search for precursors and could also be evidence for them.  相似文献   

9.
TeV γ-ray detections in flaring states without activity in X-rays from blazars have attracted much attention due to the irregularity of these “orphan” flares. Although the synchrotron self-Compton model has been very successful in explaining the spectral energy distribution and spectral variability of these sources, it has not been able to describe these atypical flaring events. On the other hand, an electron–positron pair plasma at the base of the AGN jet was proposed as the mechanism of bulk acceleration of relativistic outflows. This plasma in quasi-thermal equilibrium called Wein fireball emits radiation at MeV-peak energies serving as target of accelerated protons. In this work we describe the “orphan” TeV flares presented in blazars 1ES 1959+650 and Mrk 421 assuming geometrical considerations in the jet and evoking the interactions of Fermi-accelerated protons and MeV-peak target photons coming from the Wein fireball. After describing successfully these “orphan” TeV flares, we correlate the TeV γ-ray, neutrino and UHECR fluxes through interactions and calculate the number of high-energy neutrinos and UHECRs expected in IceCube/AMANDA and TA experiment, respectively. In addition, thermal MeV neutrinos produced mainly through electron–positron annihilation at the Wein fireball will be able to propagate through it. By considering two- (solar, atmospheric and accelerator parameters) and three-neutrino mixing, we study the resonant oscillations and estimate the neutrino flavor ratios as well as the number of thermal neutrinos expected on Earth.  相似文献   

10.
The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy.In this paper, we pay attention to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh (1981). A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these largescale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the largescale fields.This dynamo process generates also some of the familiar “force-free” fields or the “sheared” magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that “low temperature flares” are directly driven by the photospheric dynamo process.  相似文献   

11.
CMEs and flares are the two energetic phenomena on the Sun responsible for generating shocks. Our main aim is to study the relation between the physical properties of CMEs and flares associated with and without type II radio bursts. We considered a set of 290 SOHO/LASCO CMEs associated with GOES X-ray flares observed during the period from January 1997 to December 2000. The relationship between the flares and CMEs is examined for the two sets i) with metric-type IIs and ii) without metric-type IIs. Physical properties such as rise time, duration, and strength of the flares and width, speed, and acceleration of CMEs are considered. We examined the energy relationship and temporal relationship between the CMEs and flares. First, all the events in each group were considered, and then the limb events in each group were considered separately. While there is a relationship between the temporal characteristics of flares and CME properties in the case of with-type IIs, it is absent in the case of all without-type IIs. Among all the relations studied, the correlation between flare duration and CME properties is found to be highly significant compared to the other relations. Also, the relationship between flare strength and CME speed found in the with-type II events is absent in the case of all without-type II events. However, when the limb without-type II events (with reduced time window between flare and CME) are studied separately, we found the energy relationship and the temporal relationship.  相似文献   

12.
13.
We briefly discuss the observed features including the high flux density, short duration, narrow emission band, fast frequency drift, quasi-periodic oscillation and fast variation of polarized components, of 51 spike emission events observed at 2545/2645 MHz in the solar activity peak year, 1991 January–December, and carry out correlation analysis between these events and optical flares, magnetic field intensity and configuration of flare regions, and sunspot evolution types of active regions. In view of the fact that the observed and statistical characteristics of the spike emissions are very different from those of known types of solar radio burst and known solar radio components, we think that the spike emission in the peak years is probably a new type of radio burst excited by electron cyclotron maser instability under wave-particle resonance, or a new solar radio component.  相似文献   

14.
It is well known that there is a temporal relationship between coronal mass ejections (CMEs) and associated flares. The duration of the acceleration phase is related to the duration of the rise phase of a flare. We investigate CMEs associated with slow long duration events (LDEs), i.e. flares with the long rising phase. We determined the relationships between flares and CMEs and analyzed the CME kinematics in detail. The parameters of the flares (GOES flux, duration of the rising phase) show strong correlations with the CME parameters (velocity, acceleration during main acceleration phase, and duration of the CME acceleration phase). These correlations confirm the strong relation between slow LDEs and CMEs. We also analyzed the relation between the parameters of the CMEs, i.e. a velocity, an acceleration during the main acceleration phase, a duration of the acceleration phase, and a height of a CME at the end of the acceleration phase. The CMEs associated with the slow LDEs are characterized by high velocity during the propagation phase, with the median equal to 1423 km?s?1. In half of the analyzed cases, the main acceleration was low (a<300 m?s?2), which suggests that the high velocity is caused by the prolonged acceleration phase (the median for the duration of the acceleration phase is equal 90 minutes). The CMEs were accelerated up to several solar radii (with the median ≈?7 R ), which is much higher than in typical impulsive CMEs. Therefore, slow LDEs may potentially precede extremely strong geomagnetic storms. The analysis of slow LDEs and associated CMEs may give important information for developing more accurate space-weather forecasts, especially for extreme events.  相似文献   

15.
A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS-Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single (“elementary”) flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16?–?1.51 keV, 1.51?–?15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue – the SphinX Flare Catalogue – which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.  相似文献   

16.
Energetic proton measurements obtained from the GOES and IMP-8 satellites as well as from ground-based neutron monitors are compared with the GOES soft X-ray measurements of the associated solar flares for the period 1975–2003. The present study investigates a broad range of phenomenology relating proton events to flares (with some references to related interplanetary disturbances), including correlations of occurrence, intensities, durations and timing of both the particle event and the flare as well as the role of the heliographic location of the designated active region. 1144 proton events of > 10 MeV energy were selected from this 28-year period. Owing primarily to the low particle flux threshold employed more than half of this number was found to be reliably connected with an X-ray flare. The statistical analysis indicates that the probability and magnitude of the near-Earth proton enhancement depends critically on the flare's importance and its heliolongitude. In this study all flares of X-ray importance > X5 and located in the most propitious heliolongitude range, 15W to 75W, were succeeded by a detectable proton enhancement. It was also found that the heliolongitude frequently determines the character of the proton event time profile. In addition to intensity, duration and timing, proton events were found to be related to the other flare properties such as lower temperatures and longer loop lengths.  相似文献   

17.
Solar hard X-ray bursts   总被引:3,自引:0,他引:3  
Brian R. Dennis 《Solar physics》1985,100(1-2):465-490
The major results from SMM are presented as they relate to our understanding of the energy release and particle transportation processes that lead to the high-energy X-ray aspects of solar flares. Evidence is reviewed for a 152–158 day periodicity in various aspects of solar activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented including the spectrum of peak rates and the distribution of the photon number spectrum. A flare classification scheme introduced by Tanaka is used to divide flares into three different types. Type A flares have purely thermal, compact sources with very steep hard X-ray spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay. SMM data are presented for examples of type B and type C events. New results are presented showing coincident hard X-rays, O v, and UV continuum observations in type B events with a time resolution of 128 ms. The subsecond variations in the hard X-ray flux during 10% of the stronger events are discussed and the fastest observed variation in a time of 20 ms is presented. The properties of type C flares are presented as determined primarily from the non-imaged hard X-ray and microwave spectral data. A model based on the association of type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.  相似文献   

18.
In this study we perform a statistical study on, 8319 X-Ray solar flares observed with the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission satellite (SMM). The events are examined in terms of the durations, maximum intensities, and intensity profiles. It is concluded that there is no evidence for a correlation between flare intensity, flare duration, and flare asymmetry. However, we do find evidence for a rapid fall-of in the number of short-duration events.  相似文献   

19.
We discuss the implications of the first systematic observations of solar flares at submillimeter wavelengths, defined here as observing wavelengths shorter than 3 mm (frequencies higher than 0.1 THz). The events observed thus far show that this wave band requires a new understanding of high-energy processes in solar flares. Several events, including observations from two different observatories, show during the impulsive phase of the flare a spectral component with a positive (increasing) slope at the highest observable frequencies (up to 405 GHz). To emphasize the increasing spectra and the possibility that these events could be even more prominent in the THz range, we term this spectral feature a “THz component”. Here we review the data and methods, and critically assess the observational evidence for such distinct component(s). This evidence is convincing. We also review the several proposed explanations for these feature(s), which have been reported in three distinct flare phases. These data contain important clues to flare development and particle acceleration as a whole, but many of the theoretical issues remain open. We generally have lacked systematic observations in the millimeter-wave to far-infrared range that are needed to complete our picture of these events, and encourage observations with new facilities.  相似文献   

20.
By performing certain spatial and temporal criteria, we obtained 492 CME events simultaneously associated with GBM solar flare events (hereafter, GBM-flare–CME) from the total number 5123 Gamma-ray Burst Monitor (GBM) solar flares and 15228 Coronal Mass Ejections (CMEs) detected during the solar cycle 24 (2008–2019). Among these 492 events, which represent about 9.6% of the total number of the detected GBM flares, there are just 381 events (77.4%) representing the CMEs associated with the flares that are detected instantly by both GBM and RHESSI detectors. We found no significant distinction in the results after applying the spatial criteria compared with those arising from applying the temporal criteria only.Actually, all CMEs are ejected within the flare's preflare and the impulsive phases only. From our results, we conclude that the GBM flares whose long duration are most frequently associated with faster and wider CMEs and vice versa. In addition, the longer the flare's duration, the more interval time between the start time of GBM solar flare and CME's ejection time through a linear correlation [Mean Interval = 0.464 × Duration (min)] with a correlation coefficient equals 0.93. We conclude also that, the highly probable, γ-ray emitting flares (detected by GBM only) have a shorter duration and time interval than X-ray flares (detected also by RHESSI). As well as the GBM - CMEs events, without RHESSI associated CMEs are faster and wider than those associated with RHESSI events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号