首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对不规则波浪作用下Wigley型船的运动响应问题进行了系统的研究,采用统计学方法深入探讨了船舶不规则运动幅值和响应周期的分布规律,并通过傅里叶变换对船舶运动响应进行了频谱特征分析。结果表明,船舶横摇方向与升沉和纵摇方向随机运动的响应特征有显著差异。在升沉与纵摇方向,波浪谱峰频率远离自振频率,前十分之一大振幅运动对应周期离散性较小,基本稳定在波浪谱峰周期附近,但小振幅运动周期分布离散性较大,频谱分析指出船舶升沉与纵摇运动响应频谱在波浪谱峰频率附近出现明显峰值。而在横摇方向,波浪谱峰频率与自振频率相耦合,不同振幅的横摇运动响应周期均稳定在自振周期附近,且周期离散性较小,频谱分析也表明横摇运动响应频谱主要集中于船舶运动自振频率附近。  相似文献   

2.
The verification phase of the Jason-1 satellite altimeter mission presents a unique opportunity for comparing near-simultaneous, independent satellite measurements. Here we examine simultaneous significant wave height measurements by the Jason-1 and TOPEX/Poseidon altimeters. These data are also compared with in situ measurements from deep-ocean buoys and with predicted wave heights from the Wave Watch III operational model. The rms difference between Jason and TOPEX wave heights is 28 cm, and this can be lowered by half through improved outlier editing and filtering of high-frequency noise. Noise is slightly larger in the Jason dataset, exceeding TOPEX by about 7 cm rms at frequencies above 0.05 Hz, which is the frequency at which the coherence between TOPEX and Jason measurements drops to zero. Jason wave heights are more prone to outliers, especially during periods of moderate to high backscatter. Buoy comparisons confirm previous reports that TOPEX wave heights are roughly 5% smaller than buoy measurements for waves between 2 and 5 m; Jason heights in general are 3% smaller than TOPEX. Spurious dips in the TOPEX density function for 3- and 6-m waves, a problem that has existed since the beginning of the mission, can be solved by waveform retracking.  相似文献   

3.
《Marine Geodesy》2013,36(3-4):367-382
The verification phase of the Jason-1 satellite altimeter mission presents a unique opportunity for comparing near-simultaneous, independent satellite measurements. Here we examine simultaneous significant wave height measurements by the Jason-1 and TOPEX/Poseidon altimeters. These data are also compared with in situ measurements from deep-ocean buoys and with predicted wave heights from the Wave Watch III operational model. The rms difference between Jason and TOPEX wave heights is 28 cm, and this can be lowered by half through improved outlier editing and filtering of high-frequency noise. Noise is slightly larger in the Jason dataset, exceeding TOPEX by about 7 cm rms at frequencies above 0.05 Hz, which is the frequency at which the coherence between TOPEX and Jason measurements drops to zero. Jason wave heights are more prone to outliers, especially during periods of moderate to high backscatter. Buoy comparisons confirm previous reports that TOPEX wave heights are roughly 5% smaller than buoy measurements for waves between 2 and 5 m; Jason heights in general are 3% smaller than TOPEX. Spurious dips in the TOPEX density function for 3- and 6-m waves, a problem that has existed since the beginning of the mission, can be solved by waveform retracking.  相似文献   

4.
SWAN model predictions, initialized with directional wave buoy observations in 550-m water depth offshore of a steep, submarine canyon, are compared with wave observations in 5.0-, 2.5-, and 1.0-m water depths. Although the model assumptions include small bottom slopes, the alongshore variations of the nearshore wave field caused by refraction over the steep canyon are predicted well over the 50 days of observations. For example, in 2.5-m water depth, the observed and predicted wave heights vary by up to a factor of 4 over about 1000 m alongshore, and wave directions vary by up to about 10°, sometimes changing from south to north of shore normal. Root-mean-square errors of the predicted wave heights, mean directions, periods, and radiation stresses (less than 0.13 m, 5°, 1 s, and 0.05 m3/s2 respectively) are similar near and far from the canyon. Squared correlations between the observed and predicted wave heights usually are greater than 0.8 in all water depths. However, the correlations for mean directions and radiation stresses decrease with decreasing water depth as waves refract and become normally incident. Although mean wave properties observed in shallow water are predicted accurately, nonlinear energy transfers from near-resonant triads are not modeled well, and the observed and predicted wave energy spectra can differ significantly at frequencies greater than the spectral peak, especially for narrow-band swell.  相似文献   

5.
$H_{2}$ and $H_{infty}$ designs applied to the diving and course control of an autonomous underwater vehicle (AUV) considering the presence of wave disturbances are described. The six-degrees-of-freedom equations of motion of the vehicle are described as a linear model and divided into three noninteracting (or lightly interacting) subsystems for speed control, steering, and diving. This work is based on the slender form of the Naval Postgraduate School (NPS, Monterey, CA) AUV, considering that the subsystems can be controlled by means of two single-screw propellers, a rudder, port and starboard bow planes, and a stern plane. A model of the AUV dynamics is presented with the first- and the second-order wave force disturbances, i.e., the Froude–Kriloff and diffraction forces. An algorithm of nonlinear regression for the rationalization of the subsurface sea spectrum is provided in this case study. The obtained results are analyzed and evaluated in the frequency domain comparing the controllers performance considering or not the inclusion of the model of waves.   相似文献   

6.
The relative importance of radiation stress gradients and alongshore pressure gradients to surfzone dynamics is investigated using observations of water levels, waves, and flows measured onshore of a large ebb-tidal delta. Incident wave heights measured along the ~ 11-m depth contour varied about 10% over a 1.2-km alongshore transect, resulting in alongshore wave setup differences on the order of 10 cm over the 600-m extent of the surfzone instrument array in 1.5-m depth. Despite the moderate alongshore variability in wave heights, the southerly alongshore pressure gradient, associated with the alongshore variability of wave-driven set-up, was typically twice as large as the northerly radiation stress gradient forcing, consistent with the observed southerly currents during the week-long experiment. The magnitude of the alongshore forcing and resulting alongshore velocity is reproduced by the two-dimensional depth-averaged numerical model of Shi et al. (JGR-Oceans, 2011). These observations, together with the numerical results, indicate that moderate alongshore wave height gradients (O(10 4)) outside the surfzone owing to alongshore variations in the offshore bathymetry can result in alongshore pressure gradients that are larger than radiation stress gradients.  相似文献   

7.
This paper presents an exact solution of the problem of free nonlinear rolling or pitching motion of a submerged vehicle. The nondimensional frequency-amplitude relationship of free uncoupled roll or pitch is universal, i.e. the single curve describes the behavior of any vehicle. This relationship is softening, i.e. the decreasing frequencies correspond to larger amplitudes of roll or pitch. The amplitudes of vibrations in the region of frequencies corresponding to the resonance are very sensitive to small variations of the frequency. These conclusions, i.e. the softening nonlinearity and the high sensitivity of the amplitudes to small variations of the vibration frequency are valid also for the problem of forced nonlinear roll or pitch motion of submerged vehicles.  相似文献   

8.
《Ocean Engineering》2004,31(3-4):483-512
Six degrees of freedom motion response tests of a Ro-Ro model have been carried out in regular waves for intact and damaged conditions. The stationary model was tested in different wave heights and wave frequencies for the head, beam and stern quartering seas in order to explore the effect of damage and varying wave heights on the motion responses of the model. Analysis of the results indicates that damage has an adverse effect on the motion responses of the model depending upon the directionality of the waves and frequency range applied.  相似文献   

9.
The paper analyses the effect of non-linearity and bottom friction on propagation of tsunami-type surface waves from the abyssal part of the Black Sea towards the shelf zone. The study relies, on numerical solution of unidimensional non-linear equations for long waves, using the finite-difference technique. Numerical experiments have been conducted for the bottom profile continental slope and shelf, with the full wave reflection being prescribed at a 10-m depth contour. It has been shown that the major role in transforming solitary waves belongs to non-linear topographic factors rather than to dissipation. The reflected wave has been found to be non-linearly distorted, and wave heights in the Black Sea coastal zone have been found to increase by many times. Translated by Vladimir A. Puchkin.  相似文献   

10.
A theoretical methodology to determine the open-loop directional stability of a near-surface underwater vehicle is presented. It involves a solution of coupled sway and yaw equations of motion in a manner similar to that carried out for surface ships. The stability derivatives are obtained numerically through simulation of motions corresponding to planar motion mechanism (PMM) model tests. For the numerical simulation, a boundary-integral method based on the mixed Lagrangian-Eulerian formulation is developed. The free-surface effect on the vehicle stability is determined by comparing the results with that obtained for vehicle motion in infinite fluid. The methodology was used to determine the stability of the Florida Atlantic University’s Ocean EXplorer (OEX) AUV. The presence of the free surface, through radiation damping, is found to suppress unsteady oscillations and thereby enhance the directional stability of the vehicle. With effects of free surface, forward speed, location and geometry of rudders, location of the center of gravity etc. all being significant factors affecting stability, a general conclusion cannot be drawn on their combined effect on the vehicle stability. The present computational methodology is therefore a useful tool to determine an underwater vehicle’s stability for a given configuration and thus the viability of an intended mission a priori.  相似文献   

11.
Zero-crossing wave heights, obtained from the field measurement of random waves propagating through salt marsh vegetation (Spartina alterniflora) during a tropical storm, were analyzed to examine their probability distribution. Wave data (significant wave heights up to 0.4 m in 0.8 m depth) were collected over a two-day period along a 28 m transect using three pressure transducers sampling at 10 Hz. Wave height distribution was observed to deviate from the Rayleigh distribution. The observed probability densities of the larger wave heights were reduced significantly by vegetation, producing wave heights lower than those predicted by the Rayleigh distribution. Assuming Rayleigh distributed wave heights for the incident waves to the vegetation patch, existing vegetation-induced wave attenuation formulations are used to derive a special form of two-parameter Weibull distribution for wave heights in the inundated wetland. The scale parameter of the distribution is theoretically shown to be a function of the shape parameter, which agrees with the measurements, effectively reducing the proposed distribution to a one-parameter type. The derived distribution depends on the local parameters only and fits well to the observed distribution of wave heights attenuated by vegetation. Empirical relationships are developed to estimate the shape parameter from the local wave parameters.  相似文献   

12.
应用基于势流理论的时域高阶边界元方法,建立一个完全非线性的三维数值波浪水槽,通过实时模拟推板造波运动的方式产生波浪。通过混合欧拉-拉格朗日方法和四阶Runge-Kutta方法更新自由水面和造波板的瞬时位置。利用所建模型分别模拟了有限水深波和浅水波,与试验结果、相关文献结果和浅水理论结果吻合较好,且波浪能够稳定传播。系统地讨论造波板的运动圆频率、振幅和水深等对波浪传播和波浪特性的影响,并对波浪的非线性特性进行分析,研究发现造波板运动频率、运动振幅以及水深均将对波浪形态和波浪非线性产生显著影响。结果为真实水槽造波机的运动控制以及波浪生成试验提供了依据,便于实验室设置更合理的参数来准确模拟不同条件下的波浪。  相似文献   

13.
This paper presents a discrete-time quasi-sliding mode controller for an autonomous underwater vehicle (AUV) in the presence of parameter uncertainties and a long sampling interval. The AUV, named VORAM, is used as a model for the verification of the proposed control algorithm. Simulations of depth control and contouring control are performed for a numerical model of the AUV with full nonlinear equations of motion to verify the effectiveness of the proposed control schemes when the vehicle has a long sampling interval. By using the discrete-time quasi-sliding mode control law, experiments on depth control of the AUV are performed in a towing tank. The controller makes the system stable in the presence of system uncertainties and even external disturbances without any observer nor any predictor producing high rate estimates of vehicle states. As the sampling interval becomes large, the effectiveness of the proposed control law is more prominent when compared with the conventional sliding mode controller  相似文献   

14.
A modified gravity-type cage, developed by SADCO Shelf Ltd., was examined using numerical and physical models to determine if the cage and mooring system is suitable for an exposed site south of the Isles of Shoals, NH. The 3000-m/sup 3/ SADCO Shelf Submersible Fish Cage has angled stays between the upper framework and the ballasted bottom rim (in addition to net) to resist the horizontal shear deformation. The mooring system consists of three legs-each made up of a taut vertical chain and an angled rope, both leading to deadweight anchors. Normalized response amplitudes (response amplitude operators) were found for motion response in heave, surge and pitch, and load response in the anchor and bridle lines, in regular (single frequency) waves. In addition, a stochastic approach was taken to determine the motion and load transfer functions in random waves using a spectrum representative of seas at the selected site. In general, the system motion had a highly damped response, with no resonant peaks within the wave excitation range of 0.05 to 0.45 Hz. The anchor line force response was at all frequencies below 5 kN per meter of wave amplitude. The physical model tests showed consistently more conservative (larger) results compared to those for the numerical model.  相似文献   

15.
The hydrodynamic behaviour of an oscillating wave surge converter (OWSC) in large motion excited by nonlinear waves is investigated. The mechanism through which the wave energy is absorbed in the nonlinear system is analysed. The mathematical model used is based on the velocity potential theory together with the fully nonlinear boundary conditions on the moving body surface and deforming free surface. The problem is solved by the boundary element method. Numerical results are obtained to show how to adjust the mechanical properties of the OWSC to achieve the best efficiency in a given wave, together with the nonlinear effect of the wave height. Numerical results are also provided to show the behaviour of a given OWSC in waves of different frequencies and different heights.  相似文献   

16.
The morphology and mobility of bedforms within a sand wave field having a water depth of 30 to 40 m have been studied by side-scan sonar surveys at different tidal stages and under various wave climates. Large sand waves with heights of 4 to 7 m retained their orientation throughout the survey period, Small sand waves with heights less than 2 to 3 m changed their height over a tidal cycle and their location (relative to larger sand waves) between surveys. The maximum change appeared to be related to ebb current acceleration. Megaripple wavelengths were reduced under surface wave action.  相似文献   

17.
CODAR, a high-frequency (HF) compact radar system, was operated continuously over several weeks aboard the semisubmersible oil platform Treasure Saga for the purpose of wave-height directional measurement and comparison. During North Sea winter storm conditions, the system operated at two different frequencies, depending on the sea state. Wave data are extracted from the second-order backscatter Doppler spectrum produced by nonlinearities in the hydrodynamic wave/wave and electromagnetic wave/scatter interactions. Because the floating oil rig itself moves in response to long waves, a technique has been developed and successfully demonstrated to eliminate to second order the resulting phase-modulation contamination of the echo, using separate accelerometer measurement of the platform's lateral motions. CODAR wave height, mean direction, and period are compared with data from a Norwegian directional wave buoy; in storm seas with wave heights that exceeded 9 m, the two height measurements agreed to within 20 cm RMS, and the mean direction to better than 15° RMS  相似文献   

18.
The accuracy of nearshore infragravity wave height model predictions has been investigated using a combination of the spectral short wave evolution model SWAN and a linear 1D SurfBeat model (IDSB). Data recorded by a wave rider located approximately 3.5 km from the coast at 18 m water depth have been used to construct the short wave frequency-directional spectra that are subsequently translated to approximately 8 m water depth with the third generation short wave model SWAN. Next the SWAN-computed frequency-directional spectra are used as input for IDSB to compute the infragravity response in the 0.01 Hz–0.05 Hz frequency range, generated by the transformation of the grouped short waves through the surf zone including bound long waves, leaky waves and edge waves at this depth. Comparison of the computed and measured infragravity waves in 8 m water depth shows an average skill of approximately 80%. Using data from a directional buoy located approximately 70 km offshore as input for the SWAN model results in an average infragravity prediction skill of 47%. This difference in skill is in a large part related to the under prediction of the short wave directional spreading by SWAN. Accounting for the spreading mismatch increases the skill to 70%. Directional analyses of the infragravity waves shows that outgoing infragravity wave heights at 8 m depth are generally over predicted during storm conditions suggesting that dissipation mechanisms in addition to bottom friction such as non-linear energy transfer and long wave breaking may be important. Provided that the infragravity wave reflection at the beach is close to unity and tidal water level modulations are modest, a relatively small computational effort allows for the generation of long-term infragravity data sets at intermediate water depths. These data can subsequently be analyzed to establish infragravity wave height design criteria for engineering facilities exposed to the open ocean, such as nearshore tanker offloading terminals at coastal locations.  相似文献   

19.
This paper describes the results of an experimental investigation of the microwave backscatter from several laboratory generated transient breaking waves. The breaking waves were generated mechanically in a 35 m×0.7 m×1.14 m deep wave tank, utilizing chirped wave packets spanning the frequency range 0.8-2.0 Hz. Backscatter measurements, were taken by a X/K-band (10.525 GHz, 24.125 GHz) continuous wave Doppler radar at 30°, 45°, and 60° angles of incidence, and at azimuth angles of 0° and 180° relative to the direction of wave propagation. Surface profiles were measured with a high-speed video camera and laser sheet technique. Specular facets were detected by imaging the surface from the perspective of the radar. The maximum radar backscatter occurred in the upwave direction prior to wave breaking, was nearly polarization independent and corresponded to the detection of specular facets on the steepened wave face. This peak radar backscatter was predicted through a finite conductivity corrected physical optics technique over the measured surface wave profiles. Post break backscatter was predicted using a roughness corrected physical optics technique and the small perturbation method, which was found to predict the returns for vertical polarization, but to under predict the horizontal returns  相似文献   

20.
Near-bed horizontal (cross-shore) and vertical velocity measurements were acquired in a laboratory wave flume over a 1:8 sloping sand beach of finite depth. Data were acquired using a three-component acoustic Doppler velocimeter to measure the velocity field close to, but at a fixed distance from the bed. The near-bed velocity field is examined as close as 1.5 cm above a trough and crest of a ripple under three different types of wave forcing (Stokes waves, Stokes groups, and irregular waves). Although both horizontal and vertical velocity measurements were made, attention is focused primarily on the vertical velocity. The results clearly indicate that the measured near-bed vertical velocity (which was outside the wave-bottom boundary layer) is distinctly nonzero and not well predicted by linear theory. Spectral and bispectral analysis techniques indicate that the vertical velocity responds differently depending on the location over a ripple, and that ripple-induced effects on the velocity field are present as high as 4–8 cm above the bed (for vortex ripples with wavelengths on the order of 8 cm and amplitudes on the order of 2 cm). At greater heights above the bed, the observed wave-induced motion is adequately predicted by the linear theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号