首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heating and acceleration of electrons in solar impulsive hard X-ray (HXR) flares are studied according to the two-stage acceleration model developed by Zhang for solar 3He-rich events. It is shown that electrostatic H-cyclotron waves can be excited at a parallel phase velocity less than about the electron thermal velocity and thus can significantly heat the electrons (up to 40 MK) through Landau resonance. The preheated electrons with velocities above a threshold are further accelerated to high energies in the flare-acceleration process. The flare-produced electron spectrum is obtained and shown to be thermal at low energies and power law at high energies. In the non-thermal energy range, the spectrum can be double power law if the spectral power index is energy dependent or related. The electron energy spectrum obtained by this study agrees quantitatively with the result derived from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) HXR observations in the flare of 2002 July 23. The total flux and energy flux of electrons accelerated in the solar flare also agree with the measurements.  相似文献   

2.
We investigate the spatial dependence of high energy electrons and their radiations in pulsar wind nebulae(PWNe).By assuming a time-dependent broken power-law injection and spatial dependence of convection velocity,magnetic field strength and diffusion coefficient on the radial distance of an expanding system,we numerically solve the Fokker-Planck transport equation including convection,diffusion,adiabatic loss and radiative loss in spherical coordinates,and investigate the effects of magnetic field,PWN age,maximum energy of electrons,and diffusion coefficient on electron spectra and non-thermal photon emissions.Our results indicate that(1) electron spectra and the corresponding photon spectra are a function of radial distance r of the expanding system;(2) for a given expansion velocity,the increase of the PWN age causes a slower decrease of the convection velocity(V ∝ r~(-β)) and a more rapid decrease of the magnetic field strength(B ∝ r~(-1+β)),but a more rapid increase of the diffusion coefficient(κ∝ r~(1-β)) because the index β decreases with the PWN age;and(3) the lower energy part of the electron spectra is dominated by convection and adiabatic loss,but the higher energy part is dominated by the competition between synchrotron loss and diffusion,and such a competition is a function of radial distance.Therefore the diffusion effect has an important role in the evolution of electron spectra as well as non-thermal photon spectra in a PWN.  相似文献   

3.
The spectral energy distribution (SED) of the γ-ray flare observed in July 1997 in BL Lacertae is re-considered. It is pointed out that the optical observations made by Webb et al. showed the associated optical flare has a hard spectrum (the average spectral index αopt~0.48, Fν∝ν^-α), and the ASCA observations made by Tanihata et al. showed very steep spectra in the soft X-ray band (0.7-1.5 keV) (αx~3-4). We find that the flux densities and spectral indices in both the optical and soft X-ray bands are closely consistent with a ‘canonical‘ synchrotron spectrum emitted by relativistic electrons of a power-law energy distribution with a high energy cutoff, and thus the peak of the SED of the synchrotron radiation (in representation of νFν) is located in the EUV - soft X-ray bands. Therefore, the GeV γ-ray emission observed in the July 1997 outburst may be mainly due to the synchrotron self-Compton (SSC) process, contrasting with the current explanations in terms of external radiation Compton (ERC) process, in which the seed photons are mostly taken to be the UV emission from the clouds of the broad emission line region. We argue that the hard optical spectra observed during the γ-ray outburst may be an important signature for the acceleration of high energy electrons (γe-10^4) in the γ-ray emitting region.  相似文献   

4.
It is surprising to find an instance of migration in the peak positions of synchrotron spectral energy distribution components during the activity epochs of Markarian 421(Mrk 421),accompanying an orphan flare at the X-ray and GeV-TeVγ-ray bands.A geometric interpretation and standard shock or stochastic acceleration models of blazar emission have difficulty reproducing these observed behaviors.The present paper introduces a linear acceleration by integrating the reconnection electric field into the particle transport model for the observed behaviors of Mrk 421.We note that strong evidence for evolution in characteristic of multi-wavelength spectral energy distribution including shifting the peak frequency,accompanying an orphan flare at the X-ray and GeV-TeVγ-ray bands provides an important electrostatic acceleration diagnostic in a blazar jet.Assuming suitable model parameters,we apply the results of the simulation to the 13-day flaring event in March 2010 of Mrk 421,concentrating on the evolution of multiwavelength spectral energy distribution characteristic by shifting the peak frequency.It is clear that the ratio of the electric field and magnetic field strength plays an important role in temporal evolution of the peak frequency of synchrotron spectral energy distribution component.We suggest it is reasonable that the electrostatic acceleration is responsible for the evolution of multi-wavelength spectral energy distribution characteristic by shifting the peak frequency.Based on the model results,we assert that the peak frequency of the synchrotron spectral energy distribution component may signify a temporary characteristic of blazars,rather than a permanent one.  相似文献   

5.
Through solving the single electron equation of motion and the Fokker-Planck equation including the terms of electric field strength and ion-acoustic turbulence, we study the influence of the ion-acoustic wave on the electron acceleration in turbulent reconnecting current sheets. It is shown that the ion-acoustic turbulence which causes plasma heating rather than particle acceleration should be considered. With typical parameter values, the acceleration time scale is around the order of 10^-6 s, the accelerated electrons may have approximately a power-law distribution in the energy range 20 ~100 keV and the spectral index is about 3~10, which is basically consistent with the observed hard X-ray spectra in solar flares.  相似文献   

6.
1 INTRODUCTIONThe lower energy cutoff of nonthermal electron beams is an important quantity. Not only isit related to the acceleration mechanism, but it also determines the total number of acceleratedelectrons and the energy they carry. The power-law of electron beams cannot extend to lowerenergies indefinitely for if it did, it would imply an indeflnite1y large nuInber of electrons.A lower energy cutoff (E.), therefore, must exist, to keep the number of electrons within areasonable rang…  相似文献   

7.
Effects of the energy spectral index δ, low energy cutoff E0 and number density N of energetic electrons on gyrosynchrotron spectrum are investigated for a model source with a nonuniform magnetic field. It is found that the flux density Sv of the x-mode and o-mode systematically increase with increasing E0, N and with decreasing δ. The peak frequency of the spectrum, vp, also systematically increases as increasing E0 and N, but it may not depend on δ. The gyrosynchrotron radiation in the nonuniform case is polarized predominately in the x-mode at v ≥ 3 GHz. A sense reversal of circular polarization also occurs but at much lower frequencies (v ≤ 3 GHz). The reversal frequency also increases with increasing E0 and N, but it perhaps is independent of δ.  相似文献   

8.
Based on cosmic ray data obtained by neutron monitors at the Earth's surface, and data on near-relativistic electrons measured by the WIND satellite, as well as on solar X-ray and radio burst data, the solar energetic particle (SEP) event of 2005 January 20 is studied. The results show that this event is a mixed event where the flare is dominant in the acceleration of the SEPs, the interplanetary shock accelerates mainly solar protons with energies below 130 MeV, while the relativistic protons are only accelerated by the solar flare. The interplanetary shock had an obvious acceleration effect on relativistic electrons with energies greater than 2 MeV. It was found that the solar release time for the relativistic protons was about 06:41 UT, while that for the near-relativistic electrons was about 06:39 UT. The latter turned out to be about 2 min later than the onset time of the interplanetary type III burst.  相似文献   

9.
Many projects have recently been carried out and proposed for observing high energy electrons since it is realized that cosmic ray electrons are very important when studying the dark matter particles and the acceleration mechanism of cosmic rays. An imaging calorimeter, BETS (Balloon-borne Electron Telescope with Scintillator fiber), has been developed for this purpose. Using pattern analysis of the shower development, the electrons can be selected from those primary cosmic ray proton events with flux heights one-tenth that of the electrons. The Monte-Carlo simulation is indispensable for the instrument design, the signal trigger and the data analysis. We present different shower simulation codes and compare the simulation results with the beam test and the flight data of BETS. We conclude that the code FLUKA2002 gives the most consistent results with the experimental data.  相似文献   

10.
Many projects have recently been carried out and proposed for observing high energy electrons since it is realized that cosmic ray electrons are very important when study-ing the dark matter particles and the acceleration mechanism of cosmic rays. An imaging calorimeter,BETS (Balloon-borne Electron Telescope with Scintillator fiber),has been de-veloped for this purpose. Using pattern analysis of the shower development,the electrons can be selected from those primary cosmic ray proton events with flux heights one-tenth that of the electrons. The Monte-Carlo simulation is indispensable for the instrument design,the sig-nal trigger and the data analysis. We present different shower simulation codes and compare the simulation results with the beam test and the flight data of BETS. We conclude that the code FLUKA2002 gives the most consistent results with the experimental data.  相似文献   

11.
In this paper we investigate three novel rising submillimeter(THz) bursts that occurred sequentially in Super Active Region NOAA 10486. The average rising rate of the flux density above 200 GHz is only 20 sfu GHz-1(corresponding to spectral index α of 1.6) for the THz spectral components of the2003 October 28 and November 4 bursts, but it attained values of 235 sfu GHz-1(α = 4.8) in the 2003 November 2 burst. The steeply rising THz spectrum can be produced by a population of highly relativistic electrons with a low-energy cutoff of 1 Me V, but it only requires a low-energy cutoff of 30 ke V for the two slowly rising THz bursts, via gyrosynchrotron(GS) radiation based on our numerical simulations of burst spectra in the magnetic dipole field case. The electron density variation is much larger in the THz source than in the microwave(MW) source. It is interesting that the THz source radius decreased by 20%–50%during the decay phase for the three events, but the MW source increased by 28% for the 2003 November2 event. In the paper we will present a formula that can be used to calculate the energy released by ultrarelativistic electrons, taking the relativistic correction into account for the first time. We find that the energy released by energetic electrons in the THz source exceeds that in the MW source due to the strong GS radiation loss in the THz range, although the modeled THz source area is 3–4 orders smaller than the modeled MW source one. The total energies released by energetic electrons via the GS radiation in radio sources are estimated, respectively, to be 5.2 × 1033, 3.9 × 1033 and 3.7 × 1032 erg for the October 28, November 2and 4 bursts, which are 131, 76 and 4 times as large as the thermal energies of 2.9 × 1031, 2.1 × 1031and5.2 × 1031 erg estimated from soft X-ray GOES observations.  相似文献   

12.
A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understand-ing that the energy exchange is due to the release of potential, kinetic and thermal energies of the exchanged mass. b) A special form of mass and angular momentum loss occurring in contact binaries is losses via the outer Lagrangian point. c) The effects of spin, orbital rota-tion and tidal action on the stellar structure as well as the effect of meridian circulation on the mixing of the chemical elements are considered. d) The model is valid not only for low-mass contact binaries but also for high-mass contact binaries. For illustration, we used the model to trace the evolution of a massive binary system consisting of one 12M and one 5M star. The result shows that the start and end of the contact stage fall within the semi-detached phase during which the primary continually transfers mass to the secondary. The time span of the contact stage is short and the mass transfer rate is very large. Therefore, the contact stage can be regarded as a special part of the semi-detached phase with a large mass transfer rate. Both mass loss through the outer Lagrangian point and oscillation between contact and semi-contact states can occur during the contact phase, and the effective temperatures of the primary and the secondary are almost equal.  相似文献   

13.
Resonant heating of H, O+5, and Mg+9 by parallel propagating ion cyclotron Alfven waves in solar coronal holes at a heliocentric distance is studied using the heating rate derived from the quasilinear theory. It is shown that the particle-AlfVen-wave interaction is a significant microscopic process. The temperatures of the ions are rapidly increased up to the observed order in only microseconds, which implies that simply inserting the quasilinear heating rate into the fluid/MHD energy equation to calculate the radial dependence of ion temperatures may cause errors as the time scales do not match. Different species ions are heated by Alfven waves with a power law spectrum in approximately a mass order. To heat O+5 over Mg+9 as measured by the Ultraviolet Coronagraph Spectrometer (UVCS) in the solar coronal hole at a region ≥1.9.R, the energy density of Alfven waves with a frequency close to the O+5-cyclotron frequency must be at least double of that at the Mg+9-cyclotron frequency. With an appropriate wa  相似文献   

14.
Three importantphysical processes occurringin contact binarysystems are studied. The first one is the effect of spin, orbital rotation and tide on the structure of the components, which includes also the effect of meridian circulation on the mixing of the chemical elements in the components. The second one is the mass and energy exchange between the components. To describe the energy exchange, a new approach is introduced based on the understanding that the exchange is due to the release of the potential, kinetic and thermal energy of the exchanged mass. The third is the loss of mass and angular momentum through the outer Lagrangian point. The rate of mass loss and the angular momentum carried away by the lost mass are discussed. To show the effects of these processes, we follow the evolution of a binary system consisting of a 12M and a 5M star with mass exchange between the components and mass loss via the outer Lagrangian point, both with and without considering the effects of rotation and tide. The result shows that the effect of rotation and tide advances the start of the semi-detached and the contact phases, and delays the end of the hydrogen-burning phase of the primary. Furthermore, it can change not only the occurrence of mass and angular momentum loss via the outer Lagrangian point, but also the contact or semi-contact status of the system. Thus, this effect can result in the special phenomenon of short-term variations occurring over a slow increase of the orbital period. The occurrence of mass and angular momentum loss via the outer Lagrangian point can affect the orbital period of the system significantly, but this process can be influenced, even suppressed out by the effect of rotation and tide. The mass and energy exchange occurs in the common envelope. The net result of the mass exchange process is a mass transfer from the primary to the secondary during the whole contact phase.  相似文献   

15.
Recent observations have found that chromospheric spicules behave likeAlfvenic fluctuations. Low-frequency Alfven waves are predicted to partially reflectin the transition region that has a gradient in the Alfven speed, thereby producinginward Alfven waves, which may interact nonlinearly with outward Alfven wavesto generate Alfv6nic turbulence. However, the signature of Alfvenic turbulence in thechromosphere has not yet been quantitatively analyzed with observations. Here we an-alyze some characteristics related to Alfv6nic turbulence with the observations fromHinode/SOT. We decompose the height-time diagram of the transverse oscillationsto separate the outward and inward propagating Alfvenic-like signals. The counter-propagating waves are found to have similar amplitude, period and phase speed, sug-gesting a state having an approximate balance in bi-directional energy fluxes. Counter-propagation of intensity oscillation with lower propagation speed is also presented,probably indicating the presence of slow mode waves. Moreover, we attempt to esti-mate the Elseisser spectra of the chromospheric turbulence for the first time. The rela-tive fluctuations in the magnetic field may be measured as the local slope of wave-likeshapes in spicules. The resulting low-frequency Elsaisser power spectra look similarto each other without showing a dominant population, which confirms these counter-propagating low-frequency Alfv6nic waves are in a state of balanced flux. These obser-vational results are believed to help us better understand the nature of chromosphericturbulence as well as chromospheric heating.  相似文献   

16.
In-situ observations from the FREJA magnetospheric research satellite and the Fast Auroral SnapshoT satellite have shown that plasma waves are frequently observed in the auroral plasma,which are believed to be fundamentally important in wave energy dissipation and particle energization.However,the effects of a displacement current on these waves have not been examined.Based on the two-fluid theory,we investigate the dispersion relation and polarization properties of fast,Alfven,and slow modes in the presence of a displacement current,and the effects of the displacement current on these waves are also considered.The results show that the wave frequency,polarization,magnetic helicity and other properties for the fast and Alfven modes are highly sensitive to the normalized Alfven velocity v_A/c,plasma betaβ,and propagation angle θ,while for the slow mode the dependence is minor.In particular,for both fast and Alfven modes,the magnetic helicity is obviously different with and without the displacement current,especially for the Alfven mode with the helicity reversals from right-handed to left-handed when v_A/c increases from 0 to 0.3.The charge-neutral condition of both fast and Alfven modes with frequencies larger than the proton cyclotron frequency is invalid in the presence of the displacement current.Moreover,the presence of the displacement current leads to relatively large magnetic compressibility for the Alfven mode and relatively large electron compressibility for the fast mode.These results can be useful for a comprehensive understanding of the wave properties and the physics of particle energization phenomena in auroral plasmas.  相似文献   

17.
White-light(WL) flares have been observed and studied for more than a century since their first discovery. However, some fundamental physics behind the brilliant emission remains highly controversial.One of the important facts in addressing the flare energetics is the spatio-temporal correlation between the WL emission and the hard X-ray(HXR) radiation, presumably suggesting that energetic electrons are the energy sources. In this study, we present a statistical analysis of 25 strong flares(≥M5) observed simultaneously by the Helioseismic and Magnetic Imager(HMI), on board the Solar Dynamics Observatory(SDO),and the Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI). Among these events, WL emission was detected by SDO/HMI in 13 flares, associated with HXR emission. To quantitatively describe the strength of WL emission, equivalent area(EA) is defined as the integrated contrast enhancement over the entire flaring area. Our results show that the EA is inversely proportional to the HXR power-law index,indicating that stronger WL emission tends to be associated with a larger population of high energy electrons. However, no obvious correlation is found between WL emission and flux of non-thermal electrons at50 ke V. For the other group of 13 flares without detectable WL emission, the HXR spectra are softer(larger power-law index) than those flares with WL emission, especially for the X-class flares in this group.  相似文献   

18.
AGNs with hard γ-ray emission identified so far are radio-loud.III Zw 2 is a radio intermediate AGN with a relativistic jet.We study its spectral energy distribution (SED) and find that the broad band emissions are dominated by the non-thermal emissions from the jet.We model its SED through a synchrotron + inverse Compton (IC) model.The results show that the IC component of III Zw 2 peaks at a few MeV, and the flux density drops rapidly at higher energy with photon index Γ≈3.3 above 0.1GeV.The predicted flu...  相似文献   

19.
We determine spectral indices of 228 pulsars by using Parkes pulsar data observed at 1.4 GHz,among which 200 spectra are newly determined.The indices are distributed in the range from-4.84 to-0.46.Together with known pulsar spectra from literature,we tried to find clues to the pulsar emission process.The weak correlations between the spectral index,the spin-down energy loss rate E and the potential drop in the polar gap △Ψ hint that emission properties are related to the particle acceleration process in a pulsar's magnetosphere.  相似文献   

20.
We have studied the simultaneous spectral energy distributions(SEDs) of the 2009 December flare and those of the quiescent state of blazar 3C 454.3 by constructing a multi-component model. We find that all six SEDs can be explained by a one-zone leptonic model involving synchrotron self-Compton(SSC) plus external Compton emission from an accretion disk(ECD) and that from a broad-line region(ECC). X-ray emission is dominated by the SSC mechanism, and the γ-ray spectrum is well represented by a combination of ECD and ECC processes. Our results indicate that the energy density of the magnetic field and electrons decrease with distance from the central engine, and the Doppler factor increases with the blob moving outward in the development of the 2009 December flare. The increase in the observed flux density is possibly due to the increase in the Doppler factor of the blob. The relation between the Doppler factor δb and the distance from the central black hole suggests the magnetically driven jets span a sub-pc scale, and the relation between the magnetic field B′ and the dimension of the emission region R′b is in good agreement with what is required by conservation of magnetic flux. The weak "harder-when-brighter" behavior of the γ-ray spectrum could be a result of the increase in Doppler factor during the outward motion of the blob. The parameters during the quiescent state obviously deviate from those during the flare state. We propose that the flare was likely caused by the ejection of a new blob. The gamma-ray emissions in different states are associated with the evolution of the blob.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号