首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

2.
We studied the 3D velocity structure of the crust and uppermost mantle beneath the Baikal region using tomographic inversion of ∼25,000 P and S arrivals from more than 1200 events recorded by 86 stations of three local seismological networks. Simultaneous iterative inversion with a new source location algorithm yielded 3D images of P and S velocity anomalies in the crust and upper mantle, a 2D model of Moho depths, and corrections to source coordinates and origin times. The resolving power of the algorithm, its stability against variations in the starting model, and the reliability of the final results were checked in several tests. The 3D velocity structure shows a well-pronounced low-velocity zone in the crust and uppermost mantle beneath the southwestern flank of the Baikal rift which matches the area of Cenozoic volcanism and a high velocity zone beneath the Siberian craton. The Moho depth pattern fits the surface tectonic elements with thinner crust along Lake Baikal and under the Busiyngol and Tunka basins and thicker crust beneath the East Sayan and Transbaikalian mountains and under the Primorsky ridge on the southern craton border.  相似文献   

3.
Based on rheological interpretation of formalized gravity models, earlier known deep-seated structures in the Earth’s crust and mantle of Transbaikalia have been detailed and new ones discovered. The structures are asymmetric and transverse relative to the Baikal rift zone. Their presence explains the peculiar features of the Baikal rift, including the one-way southeasterly direction of horizontal displacement of tectonic masses and northwestern migration of the Earth’s crust extension processes. The prolonged history (more than 250 Ma) of the Baikal rift zone and Transbaikalia mountainous country involved gravity or rotational detachments of rigid tectonic slabs from the craton and their sliding along intracrustal and subcrustal decollement zones into the above-dome area of the Transbaikalia asthenolith.  相似文献   

4.
The largest rift zone of Europe and Asia is located in the region of Lake Baikal. In 1968–1970 deep seismic measurements were carried out along a number of profiles with a total length of about 2000 km within the rift zone and in the adjacent parts of the Siberian platform and the region of the Baikal Mountains. These investigations were of a reconnaissance nature, and therefore the point sounding method was used.A low-velocity region for compressional waves (7.6–7.8 km/sec) has been found and could be traced over a large area in the upper parts of the mantle. The width of this anomalous zone is 200–400 km. The Baikal rift lies in its northwestern part. Within the studied part of the Siberian platform the thickness of the earth's crust is 37–39 km, while in the rift zone it is 36 km, and further to the southeast the crust-mantle boundary lies at a depth of 45–46 km. The Baikal rift proper is bounded in the northwest by a deep fracture zone and does not seem to be associated with any significant “root” or “antiroot” in the relief of the Mohorovi?i? discontinuity.The reduced compressional velocity in the upper parts of the mantle beneath the Baikal zone is considered to correspond to the same phenomena found under the mid-oceanic ridges and the extended rift system in the Basin and Range province of North America. The Baikal rift in the narrow sense of the word lies over the northwestern edge of the anomalous mantle region. This asymmetric position seems to be its main peculiarity.  相似文献   

5.
用大地电磁勘探方法研究大陆动力学(英文)   总被引:7,自引:0,他引:7  
大地电磁法通过测量地表的天然电场和磁场来提供地壳和上地幔的电阻率图像。在仪器和处理解释技术方面的进展使得大地电磁法现在能够快速采集大地电磁数据并进行二维或三维地质模型解释。由于电阻率对地下连通的流体 (如局部熔融和水 )反应灵敏 ,大地电磁资料能够给出地球介质结构成分和流变特性的信息 ,作为地震勘探所获得信息的补充。大地电磁法现在被应用于对构造运动活跃区域的大陆动力学研究。对美国圣安德烈斯断层的大地电磁研究已经揭示了地震比较活跃的断层区段和在脆性上地壳中的断裂带的电阻率之间的相关性。在青藏高原采集的大地电磁资料描绘了地壳中的主要局部熔融区域 ,其结果和大陆碰撞地球动力学模型的结果相一致。将大地电磁法应用于大陆动力学研究肯定能获得对形成大陆地壳的构造运动过程的新见解 ,尤其是在有“研究大陆动力学的天然实验室”之称的中国的构造运动活跃区域。  相似文献   

6.
中国东部岩石圈热状态与流变学强度特征   总被引:10,自引:1,他引:9  
根据均衡原理制约的地热计算得到中国东部岩石圈的温度分布状态,以40、70、100km和莫霍面深度等温线图以及600°C、1100°C等温面深度的形式表示.同时计算了以1350°C等温面深度表示的中国东部的热岩石圈厚度.结果显示:在扬子克拉通西部四川盆地之下存在160~200km厚的岩石圈根,但在整个华北克拉通之下缺失岩...  相似文献   

7.
The structure of the Earth’s crust at the junction of the Siberian craton and Sayan–Baikal Fold Belt was studied along the Bayandai Village–Cape Krestovskii profile (85 km long) by a set of geological and geophysical methods: structural survey, interpretation of long-distance photographs, emanation survey, electrical prospecting with self-potential (SP) and direct-current (DC) resistivity profiling, magnetotelluric sounding, magnetic survey, and hydrogeochemical sampling of water objects. Interpretation of the data refined the main features of the tectonic structure of western Cisbaikalia and revealed the disruption pattern and hierarchic zone–block structure of the Earth’s crust. The Obruchev fault system (≈50 km wide), which is the northwestern shoulder of the Baikal Rift, is the main interblock zone of the studied region. It consists of the Morskoi, Primorskii, and Prikhrebtovyi interblock zones, traced from depths of tens of kilometers and widening near the surface owing to superior structures. The studies gave an insight into the regularities in the occurrence of interblock zones and the criteria for their identification in different geologic-geophysical fields. An efficient complex of methods for mapping the Earth’s crust zone–block structure is proposed.  相似文献   

8.
With a view towards understanding the evolutionary history of the complex South Indian shield, several geological and geophysical studies have been carried out. Recent geophysical studies include magnetotelluric (MT), deep seismic sounding (DSS), gravity, magnetic and deep resistivity soundings (DRS). In the present study, MT results along 140 km Andiyur-Turaiyur east-west profile is presented. The data are subjected to Groom-Bailey decomposition and static shift correction before deriving a 2-D model. The 2-D modeling results have shown that the upper crust (up to about 15 km) towards western part of the profile have exhibited high resistive character of about 40, 000 ohm-m as compared to the eastern part (less than 5, 000 ohm-m). The mid-lower crust has shown a decrease in resistivity in western part of the profile, the order of resistivity being 2, 000 ohm-m. An anomalous steep conductive feature (less than 100 ohm-m) is observed near Sankari at mid-lower crustal depths (>20 km) towards middle part of the profile. This feature is spatially correlatable with the well-known Moyar-Bhavani Shear Zone (MBSZ). The features obtained in the present study are consistent with earlier MT studies in this region and correlatable with other geophysical studies. DSS studies near the study region gave an evidence for differing crustal structure on either side of MBSZ. Variation in geoelectric character along the profile both in the upper crust and mid-lower crust indicate a block structure in the SGT with shear zones acting as boundaries. The new evidence in the form of distinct geoelectric structure and also variation in seismic structure indicate a continent-continent collision zone in this region and plays an important role for the Gondwana reconstruction models of South Indian shield.  相似文献   

9.
The largest ultra-high pressure metamorphic (UHPM) belt in the world is located along the Dabie–Sulu region, which tectonically belongs to the east part of the central orogenic belt of China. Integrated geophysical investigations of using deep seismic reflection, MT, and geothermal observations have been carried out in the Sulu area since 1997. The results of integrated interpretation suggest the existence of three features: (1) a rift beneath the Lianshui basin by the Jiashan–Xionshui fault; (2) a special crustal pattern, called the magmatic multi-arch structure occurs beneath the northern Sulu UHPM zone; and (3) a northwest-dipping regional thrust crosses the Sulu crust, representing the intracontinental subduction of the Yangtze craton beneath the Sulu metamorphic belts after collision between the Yangtze and Sino-Korean cratons. A magmatic multi-arch structure consists of some arched reflectors that occur in both the lower and the upper crust where arched reflectors coincide with granitoid plutons. The multi-arch structures are common in eastern China where many Mesozoic granitoid plutons of different scales occur. The crustal structures in the Sulu metamorphic belts resulted from intensive dynamic processes following the Triassic collision between the Yangtze and Sino-Korean cratons. The formation and exhumation of UHPM rocks followed the collision, and then intracontinental subduction of the Yangtze craton beneath the Dabie–Sulu terranes took place in the early and middle Jurassic. In the late Jurassic, the Sulu lithosphere turned to an extensional regime, large-scale granitic intrusions occurred in eastern China; these likely resulted from lithospheric thinning and asthenospheric uplifting. The granitic intrusions came to a climax during the Cretaceous and were followed by rifting along existing faults in the early Eogene, resulting in many petroleum basins. The granitoid emplacement that generated the magmatic multi-arch structure and the rift were consequences of the lithospheric thinning process, and deep intracontinental subduction of the Yangtze craton beneath the Sulu metamorphic belt might partially contribute to the lithospheric thinning.  相似文献   

10.
The Tocantins Province in Central Brazil is composed of a series of SSW–NNE trending terranes of mainly Proterozoic ages, which stabilized in the Neoproterozoic in the final collision between the Amazon and São Francisco cratons. No previous information on crustal seismic properties was available for this region. Several broadband stations were used to study the regional patterns of crustal and upper mantle structure, extending the results of a recent E–W seismic refraction profile. Receiver functions and surface wave dispersion showed a thin crust (33–37 km) in the Neoproterozoic Magmatic Arc terrane. High average crustal Vp/Vs ratios (1.74–1.76) were consistently observed in this unit. The foreland domain of the Brasília foldbelt, on the other hand, is characterized by thicker crust (42–43 km). Low Vp/Vs ratios (1.70–1.72) were observed in the low-grade foreland fold and thrust zone of the Brasília belt adjacent to the São Francisco craton. Teleseismic P-wave tomography shows that the lithospheric upper mantle has lower velocities beneath the Magmatic Arc and Goiás Massif compared with the foreland zone of the belt and São Francisco craton. The variations in crustal thickness and upper mantle velocities observed with the broadband stations correlate well with the measurements along the seismic refraction profile. The integration of all seismic observations and gravity data indicates a strong lithospheric contrast between the Goiás Massif and the foreland domain of the Brasília belt, whereas little variation was found across the foldbelt/craton surface boundary. These results support the hypothesis that the Brasília foreland domain and the São Francisco craton were part of a larger São Francisco-Congo continental plate in the final collision with the Amazon plate.  相似文献   

11.
天津静海-津南剖面地壳上地幔电性结构特征   总被引:1,自引:0,他引:1  
在天津市区南部的静海-津南一线布置了32个大地电磁测深点,剖面方位角92°,对采集的资料采用远参考与Robust技术进行了处理和解释.对该区的构造维数及构造方向做了分析,揭示了该剖面地壳上地幔电性结构特征,并进行了划分.成果显示:中下地壳存在双层低阻构造层,上地幔表现为中、高阻互层.在断裂带附近受构造活动影响,低阻高导构造层会发生上下错断与缺失.沧东、白塘口、天津断裂均是多组断层构成的断裂带,控制了双窑凸起、白塘口凹陷、板桥凹陷及静海斜坡带次级构造单元.  相似文献   

12.
王方正  路凤香 《岩石学报》1995,11(2):227-241
根据该地学断面Vp结构模型,造山带中基性火成岩、金伯利岩和花岗岩中的深源包体资料,以及火成岩和变质岩,特别是超高压变质岩和超基性岩的分布和组成所揭示的壳幔深部组成的信息,结合与相对应的岩石实验Vp数据的对比,建立了秦岭洛阳-伊川-十堰-秭归地学断面及邻区的岩石圈组成的岩石学模型。这一岩石学模型表明,华北与扬子克拉通,南北秦岭造山带与其克拉通的过渡带岩石圈的岩石学模型各不相同。华北克拉通下地壳是以麻粒岩相中酸性片麻岩和紫苏花岗岩为主,同时含有基性麻粒岩,而扬子克拉通的下地壳是以角闪岩相-麻粒岩相酸性片麻岩和TTG为主体,广泛存在基性火成岩层。南北秦岭造山带的中下地壳各自继承了扬子和华北克拉通的中下地壳的特点,但已被强烈改造;南北秦岭造山带上地幔组成差异性较大,北秦岭上地幔上部以榴辉岩及榴闪岩为主,而南秦岭以蛇纹石化橄榄岩为主体,各单元100km以下的地幔都是一样的,都是石榴石二辉橄榄岩组成。因此,秦岭造山带是一个具有近30亿年历史的由不同大陆块体拼合组成的,不具简单的岩石圈分层结构样式。  相似文献   

13.
Lower crustal xenoliths recovered from Eocene to Cambrian kimberlites in the central and southern Slave craton are dominated by mafic granulites (garnet, clinopyroxene, plagioclase±orthopyroxene), with subordinate metatonalite and peraluminous felsic granulites. Geothermobarometry indicates metamorphic conditions of 650–800 °C at pressures of 0.9–1.1 GPa. The metamorphic conditions are consistent with temperatures expected for the lower crust of high-temperature low-pressure (HT-LP) metamorphic belts characteristic of Neoarchean metamorphism in the Slave craton. U–Pb geochronology of zircon, rutile and titanite demonstrate a complex history in the lower crust. Mesoarchean protoliths occur beneath the central Slave supporting models of an east-dipping boundary between Mesoarchean crust in the western and Neoarchean crust in the eastern Slave. At least, two episodes of igneous and metamorphic zircon growth occurred in the interval 2.64–2.58 Ga that correlate with the age of plutonism and metamorphism in the upper crust, indicating magmatic addition to the lower crust and metamorphic reworking during this period. In addition, discrete periods of younger zircon growth at ca. 2.56–2.55 and 2.51 Ga occurred 20–70 my after the cessation of ca. 2.60–2.58 Ga regional HT-LP metamorphism and granitic magmatism in the upper crust. This pattern of younger metamorphic events in the deep crust is characteristic of the Slave as well as other Archean cratons (e.g., Superior). The high temperature of the lower crust immediately following amalgamation of the craton, coupled with evidence for continued metamorphic zircon growth for >70 my after ‘stabilization’ of the upper crust, is difficult to reconcile with a thick (200 km), cool lithospheric mantle root beneath the craton prior to this event. We suggest that thick tectosphere developed synchronously or after these events, most likely by imbrication of mantle beneath the craton at or after ca. 2.6 Ga. The minimum age for establishing a cratonic like geotherm is given by lower crustal rutile ages of ca. 1.8 Ga in the southern Slave. Transient heating and possible magmatic additions to the lower crust continued through the Proterozoic, with possible additional growth of the tectosphere.  相似文献   

14.
利用MT资料研究位于佳木斯地块和兴凯地块之间过渡地带的岩石圈结构特征。由资料处理所得到的2D反演结果分析出过渡带(属于完达山地体)的地电特征:上部地壳的地电参数在横向上变化较大,中下部地壳所存在的低阻层带可延伸至兴凯地块岩石圈地幔之中,是否在更深位置延伸至佳木斯地块岩石圈地幔还不能确定。两古老地块的高阻特征存在一定的差异,即佳木斯地块的阻值明显高于兴凯地块。即完达山地体的南部作为两古老地块之间的过渡带,可能发生过古大洋洋中脊软流圈物质的垂向对流(上涌),并发生岩石圈板片向两古地块的俯冲过程。  相似文献   

15.
We present new results on the structure resulting from Palaeoproterozoic terrane accretion and later formation of one of the aulacogens in the East European Platform. Seismic data has been acquired along the 530-km-long, N–S-striking EUROBRIDGE'97 traverse across Sarmatia, a major crustal segment of the East European Craton. The profile extends across the Ukrainian Shield from the Devonian Pripyat Trough, across the Palaeoproterozoic Volyn Block and the Korosten Pluton, into the Archaean Podolian Block. Seismic waves from chemical explosions at 18 shot points at approximately 30-km intervals were recorded in two deployments by 120 mobile three-component seismographs at 3–4 km nominal station spacing. The data has been interpreted by use of two-dimensional tomographic travel time inversion and ray trace modelling. The high data quality allows modelling of the P- and S-wave velocity structure along the profile. There are pronounced differences in seismic velocity structure of the crust and uppermost mantle between the three main tectonic provinces traversed by the profile: (i) the Pripyat Trough is a ca. 4-km-deep sedimentary basin, fully located in the Osnitsk–Mikashevichi Igneous Belt in the northern part of the profile. The velocity structure is typical for a Precambrian craton, but is underlain by a ca. 5-km-thick lowest crustal layer of high velocity. The development of the Pripyat Trough appears to have only affected the upper crust without noticeable thinning of the whole crust; this may be explained by a rheologically strong lithosphere at the time of formation of the trough. (ii) Very high seismic velocity and Vp/Vs ratio characterise the Volyn Block and Korosten Pluton to a depth of 15 km and probably also the lowest crust. The values are consistent with an intrusive body of mafic composition in the upper crust that formed from bimodal melts derived from the mantle and the lower crust. (iii) The Podolian Block is close to a typical cratonic velocity structure, although it is characterised by relatively low seismic velocity and Vp/Vs ratio. A pronounced SW-dipping mantle reflector from Moho to at least 70 km depth may represent the Proterozoic suture between Sarmatia and Volgo–Uralia, the structure from terrane accretion, or a later shear zone in the upper mantle. The sub-Moho P-wave seismic velocity is high everywhere along the profile, with the exception of the area above the dipping reflector. This velocity change further supports a plate tectonic origin of the dipping mantle reflector. The profile demonstrates that structure from Palaeoproterozoic plate tectonic processes are still identifiable in the lithosphere, even where younger metamorphic equilibration of the crust has taken place.  相似文献   

16.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

17.
Indian subcontinent has experienced intense tectonic activity within the continent in the form of subduction, continent-continent collision, subduction-collision-accretion tectonics. Deep electrical signatures of intense tectonic activity are presented for three different regions: Himalayan region, Central Indian Tectonic zone and Southern Granulite terrain. Two long traverses at each region are discussed along with other geophysical data. The geoelectric sections across the Himalayan region have shown a clear northward dipping signature of the anomalous conductive features at upper to mid-crustal depths. This model gave a clear evidence for the collision and subduction processes. The profiles across the Central Indian tectonic zone constituting major east-west trending faults and mobile belts provided the evidence for the presence of mantle derived fluids at mid-crustal depths and also gave a clear evidence for the collision processes between the Bundelkhand craton and the Dharwar craton. The collision-accretion tectonic process is observed in Southern Granulite terrain of south India. Evidence for the exhumation of mantle derived fluids to the midcrustal depths has been observed along the Vattalakundu-Kanyakumari profile, while the subduction-collision-accretion processes have been observed along Kolattur-Palani geotransect. In all the three tectonically active regions, the deep electrical structure mapped from magnetotellurics, gave a clear evidence for the presence of anomalous conductive structures that can be related to active tectonic regime that has paved a way for better understanding of the evolution of the deep crust. In this paper all the earlier works in three regions with emphasis on tectonics are briefly reviewed.  相似文献   

18.
The mechanism of rifting in the Baikal rift zone is a complex process, with stages of crustal fracturing alternating with stages of plastic extension. Data on the form and size of the anomalous mantle region lying below the rift zone is given in the present work. Divergent flow in the upper part of the anomalous mantle is considered the cause of extension of the crust in this region.  相似文献   

19.
任纪舜  朱俊宾  李崇  刘仁燕 《地球科学》2019,44(5):1476-1486
国内外一些学者认为秦岭是一个印支碰撞造山带.但迄今为止,秦岭尚未发现三叠纪或古生代延续到三叠纪的洋盆存在的任何痕迹.秦岭泥盆系-三叠系为滨、浅海相沉积,没有远洋沉积,更没有镁铁质和超镁铁质岩石及与之密切相关的放射虫硅质岩组成的蛇绿岩套.泥盆系与下伏地质体之间有一个清楚的区域性角度不整合.商丹断裂并不是印支期,而是加里东期的板块缝合带;其两侧,中朝板块南缘和扬子板块北缘均有十分清楚的加里东造山作用的记录.沉积于扬子板块北缘的中上泥盆统刘岭群的放射性铅同位素组成与北秦岭相近,碎屑锆石年龄谱系亦证明其物质主要来自中朝板块南缘的北秦岭造山带.所谓勉略印支缝合带中的勉略和三里岗蛇绿混杂岩中的镁铁质岩,同位素测年均为元古代之产物,后者又被南华系-震旦系沉积覆盖.所谓勉略缝合带,实为一区域性大断裂带.早古生代,其北侧属扬子板块北部被动边缘;南侧为扬子板块核心部分的扬子准地台(小克拉通).所以,秦岭的印支造山作用,并不是洋盆消失后的陆陆碰撞造山作用,而是海盆消失后的中朝与扬子2个小陆块间逆冲-叠覆造山作用.作为秦岭东延的大别山超高压变质带被认为是秦岭印支碰撞造山的重要证据之一,但大别山超高压变质岩是在造山作用过程中动态超高压条件下形成的,仅用简单的静岩压力来计算其形成深度,显然是不符合实际情况的.野外地质观察、构造地质学、变质岩石学、同位素地质学、地球化学、地球物理学以及物理实验等方面的实际资料和研究结果均说明超高压变质作用并不是在上地幔而是在地壳内进行的.南秦岭-大别山的地壳构造层次,上地壳自上而下依次为:未变质的沉积岩层、绿帘-蓝片岩层、高压变质岩层、超高压变质岩层;下地壳为未卷入超高压变质作用的麻粒岩相-高角闪岩相变质杂岩.含柯石英的超高压单位只是位于上地壳下部的厚约10~12km的席状构造岩片.初步认为上地壳这一从低压到高压再到超高压的构造系统,是印支造山期间,南秦岭-大别山的上地壳以下地壳顶部为主剪切滑动面,多层次剪切作用造成的.上地壳下部的超高压变质岩,则可能是强烈剪切引起的频繁地震的震源区瞬时超高压作用的结果.  相似文献   

20.
Hudson Bay conceals several fundamental tectonic elements of the North American continent, including most of the ca. 1.9–1.8 Ga Trans-Hudson orogen (THO) and the Paleozoic Hudson Bay basin. Formed due to a collision between two cratons, the THO is similar in scale and tectonic style to the modern Himalayan–Karakorum orogen. During collision, the lobate shape of the indentor (Superior craton) formed an orogenic template that, along with the smaller Sask craton, exerted a persistent influence on the tectonic evolution of the region resulting in anomalous preservation of juvenile Proterozoic crust. Extensive products of 2.72–2.68 Ga and 1.9–1.8 Ga episodes of subduction are preserved, but the spatial scale of corresponding domains increases by roughly an order-of-magnitude (to 1000 km, comparable to modern subduction environments) from the Archean to the Proterozoic. Based on analysis of gravity and magnetic data and published field evidence, we propose a new tectonic model in which Proterozoic crust in the southeastern third of Hudson Bay formed within an oceanic or marginal-basin setting proximal to the Superior craton, whereas the northwestern third is underlain by Archean crust. An intervening central belt truncates the southeastern domains and is interpreted to be a continental magmatic arc.Thick, cold and refractory lithosphere that underlies the Bay is well imaged by surface-wave studies and comprises a large component of the cratonic mantle keel beneath North America. The existence of an unusually thick mantle root indicates that subduction and plate collision during the Trans-Hudson orogeny were ‘root-preserving’ (if not ‘root-forming’) processes. Although the Hudson Bay basin is the largest by surface area of four major intracratonic basins in North America, it is also the shallowest. Available evidence suggests that basin subsidence may have been triggered by eclogitization of lower-crustal material. Compared to other basins of similar age in North America, the relatively stiff lithospheric root may have inhibited subsidence of the Hudson Bay basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号