首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Aquifers occur in basalt deposits infilling valleys in the Western Springs catchment of Auckland City, and they discharge into small streams incised along the edges of major lava flows. Total run‐off from the area is >0.261 m3·s?1. Analyses by standard methods of twelve subsurface and surface waters show that flowing groundwaters have a low level of pollution (dissolved oxygen x = 7.6 mg·l?1, abuminoid nitrogen x = 0.038 mg·l?1, and total solids x = 188 mg·l?1). Surface waters and stagnant groundwater have high, but varying levels of biological activity. Although much of the dissolved solid content of all the waters (e.g., Ca2+, Mg2+, Na+, K+, SiO2) is consistent with the chemistry of the rocks of the catchment, particularly the glassy volcanic tuffs, for surface waters various sources of pollution also make significant contributions (e.g., leaking sewers, sewage overflows, combustion of fossil fuels, fertilisers, zoo animals). Apart from its iron level, the moderate volume (~.0.13 m3·s?1) of flowing groundwater is of suitable quality for domestic, industrial and irrigation needs.  相似文献   

2.
The vertical distributions of excess 210Pb and fall out 239, 240Pu imply a uniform sedimentation rate of 1·4–1·6 cm year?1 from 0 to 105–110 cm. This sediment accumulation rate is compatible with sulfate reduction rate data from this location. Below 70 cm only ‘aged’ refractory carbon is present (CR = 1·8% C) with an age of approximately 2400 years. This phase is present in a number of locations across Long Island Sound. Planktonic carbon (CP) is present above the 60–67 cm horizon. A value of 1·0 for AP (14C activity) at 32–37 cm was taken, AP = 1·285 was used for contemporary plankton. This was obtained by correcting the measured AP of a plankton tow sample for admixed refractory carbon. These values were then used to calculate CR, CP and CF (fossil carbon) at 32–37 cm and 6–12 cm. The only values compatible with the known sulfate reduction rate data are CR equal to pre 60–67 cm levels (1·6–1·8% C), CF being 0·3% C at both depths, and CP decreasing with depth from 0·3 to 0·4% C at 6–12 cm to close to zero at 32–37 cm.  相似文献   

3.
Use of the quadratic shear-stress law for estimating boundary drag requires specific knowledge of the magnitude of a drag coefficient, CD, and sectional mean velocity, u?. In previous attempts to adapt the relationship for use in studies of marine-sediment transport, the flow measurement has been standardized at a level 100 cm above the bed. The particularized value of the drag coefficient has been designated as C100.In the entrance area to Chesapeake Bay, Virginia, C100 has been found to range through unacceptably wide limits. Two-thirds of the values obtained are between 3.5 · 10?3 and 5.4 · 10?2. Mean C100 for the area is 1.3 · 10?2 as compared to 3 · 10?3 for tidal channels within Puget Sound, Washington.Present data suggest that, given a moveable bed, a size hierarchy of mobile bed forms, time-varying flow, and a lack of equilibrium between flow and bed, C100 changes continuously with boundary shear stress.Accurate evaluation of boundary shear stress in tidal entrances with high flow rates and mobile beds presently requires measurement of velocity profiles.  相似文献   

4.
Application of a simple model describing regional variations in the contents of manganese and associated minor metals in deep-sea sediments suggests that solid manganese phases are being removed from the <0.5 μm fraction of seawater at ~1–7 · 1012g yr?1 in excess of the rate of stream-supplied manganese. This flux is consistent with: (1) the relative rates of sediment accumulation in the Atlantic and Pacific Oceans; (2) the contrast between the oceanic residence time of manganese calculated from stream-supply data (14 · 103 yr) and from the flux of manganese precipitating in marine sediments or as manganese nodules (0.38–2.4 · 103 yr); (3) the surplus mass of manganese revealed by geochemical balance calculations (22.9 · 102g). On this basis excess manganese is accumulating in deep-sea sediments at 0.2–2.0 · 10?6 g cm?2yr?1. Manganese supplied to the upper layers of marine sediments by diagenesis has been evaluated with the aid of vertical advection—diffusion—reaction models. The calculated diagenetic flux of manganese at the sediment surface in a near-shore environment is in agreement with the known accretion rate of manganese deposits (1.7 · 10?2 g cm?2 10?3 yr?1) and the regionally variable flux over the area assessed is consistent with the presence or absence of manganese nodules at or near the water-sediment interface. The diagenetic flux at the surface of deep-sea sediments has been calculated at 0.7 · 10?4 g cm?2 10?3 yr?1 when the upper, oxic, zone of the sediment is ~20 cm thick. A limiting factor on the in situ production flux of dissolved manganese in deep-sea sediments appears to be the availability of reducing agents for manganese dissolution rather than the rate of downward transport of manganese-rich sediment to a reaction boundary where dissolution takes place. Various estimates of the rate of upward-migrating manganese suggest that manganese precipitates in the oxic zone with a rate constant of ~10?7 sec?1 with the result that diagenetic processes cannot supply the flux of excess manganese through more than ~0.25 m of oxic sediment. However, estimates of the flux of manganese to the oceans by submarine volcanic processes (0.79–1.1 · 1012g yr?1) are similar to the surplus mass of manganese detected by geochemical balance calculations (0.7 · 1012g yr?1). If submarine hydrothermal solutions provide only 10% of this excess then their computed discharge rate (39 g cm?2 yr?1) and residence time in the upper layer of oceanic crust (130,000 yr) agree well with these parameters for continental thermal springs.  相似文献   

5.
The biomass and productivity of phytoplankton populations inshore on the west coast of South Africa were investigated towards the end of the upwelling season, a period when high-biomass dinoflagellate blooms are common. Productivity was estimated from natural fluorescence measurements (PNF ), using photosynthesis (P) v. irradiance (E) relationships (PE ) and by means of the in situ 14C-method (PC ) A linear regression of PNF productivity against PC and PE productivities yielded a slope of 0.911 and an r 2 of 0.83 (n = 41). Physical and biological variability was high inshore, reflecting alternating periods of upwelling and quiescence. Mean chlorophyll inshore (within a 12 m water column) ranged from 0.7 to 57.8 (mean = 8.9) mg·m&minus3, mean PNF productivity ranged from 8.4 to 51.0 (mean = 24.6) mgC·m?3·h?1 and daily integral PNF productivity from 0.8 to 4.8 (mean = 2.3) gC·m?2·day?l. Transects sampled during active and relaxation phases of upwelling had different chlorophyll distributions. High chlorophyll concentrations (sometimes >50 mg·m?3) were associated with surface blooms within the region of the upwelling front. Estimates of daily water-column PNF productivity within these frontal blooms ranged from 4.0 to 5.6 gC·m?2·day?1. With relaxation of wind stress, blooms dominated by dinoflagellates flooded shorewards and often formed red tides. Chlorophyll concentrations of > 175 mg·m?3 and productivity rates > 500 mgC·m?3·h?1 and 12 gC·m?2·day?1 were measured during a particularly intense red tide. Offshore, the water column was highly stratified with a well-defined subsurface chlorophyll maximum layer within the pycnocline region. Estimates of daily water-column PNF productivity ranged from 2.4 to 4.0 gC·m?2·day?1 offshore. The high productivity of shelf waters on the West Coast in late summer can be ascribed largely to dinoflagellate populations and their success in both upwelling systems and stratified conditions.  相似文献   

6.
Abstract

Nitrogen fixing potential was measured in summer 1975 by acetylene reduction in situ at 5 stations on the intertidal flats of the Waimea Inlet, Nelson, New Zealand, which receive nutrients from several sources. Highest values (644 μmol?m?2.d?1) were obtained on sediments near an apple cannery effluent discharge and were linear through at least two tidal cycles. The cannery waste had the highest carbon to nitrogen ratio (10.3 : 1.0) of all the effluents examined and exhibited the highest rate of acetylene reduction (14.0 μmol?l?1.d?1). Sizeable populations of the nitrogen fixing bacteria Klebsiella pneumoniae were isolated from the cannery effluent (2 × 104 per millilitre) and also from the mud adjacent to the discharge pipe (5 × 105 per millilitrc). The stimulatory effect of the cannery effluent on nitrogen fixation in the sediment was shown to be restricted to close to the discharge point. Sediments in areas affected by slaughterhouse and sewage effluents exhibited the second and third highest rates of acetylene reduction, (130 &; 28 μmol?m?2.d?1 respectively). In both places, the activities were not restricted to the immediate vicinity of the effluent channels. Nitrogen fixation was lowest in sediments fronting a catchment of grazed pasture. Fixation was low also in sediments affected by effluents from the hydraulic debarker of a woodchip mill.  相似文献   

7.
The stability constants of the ion pairs NaSO4?, KSO4?, MgSO4?, CaSO4, MgCl+ and CaCl+ were determined at 25°C and 0.7 M formal ionic strength, by measuring the solubility of gypsum (CaSO4 · 2H2O) in different media. The media used contained one or two of the following electrolytes: NaCl, KCl, MgCl2, NaClO4, Mg(ClO4)2, Na2SO4. Values for the stability constants are 1.22, 1.84, 12.3, 30.6, 0.48 and 1.20 M?1, respectively, and the solubility product for gypsum is 2.87 · 10?4M2. The distribution of the main constituents of seawater was calculated using these results and the values of the carbonate and bicarbonate constants given by Dyrssen and Hansson (1972–1973). The solubility of gypsum in seawater as calculated and determined experimentally was 21.43 mM and 21.10 mM, respectively.  相似文献   

8.
Abstract

Phosphorus and nitrogen were measured in stream run‐off from the four catchments of the Taita Experimental Basin (41° 11′ S, 174° 58′ E). The land is used as exotic conifer forest, native forest, and hill pasture. Multiple regression analysis was used to estimate chemical losses per unit area in floods and at low flows.

At low flows, the hill pasture (fertilised with lime at 630 kg·ba?1·y?1, and superphosphate at 380 kg·ha?1·y?1) tended to lose more phosphorus and nitrate than the forested land, but differences were small, and not always significant. During large floods, the hill pasture (No. 5 Catchment) lost about 3 times as much reactive phosphate and 2–5 times as much total phosphorus as the forested land, and 130–190 times as much nitrate as land in the Exotic Forest and Native Forest 2 Catchments. Nitrate losses from land in the No. 4 Catchment (mainly native forest) were as high as those from the hill pasture, so high nitrate loss is not associated solely with agriculture.

Losses of total phosphorus via the catchment streams were estimated as: No. 5 Catchment (hill pasture), 293 g·ha?1·y?1; Native Forest 2 Catchment, 201 g·ha?1·y?1; No. 4 Catchment, 124 g·ha?1·y?1; Exotic Forest Catchment, 71 g·ha?1.y?1. Nitrate‐N losses were estimated to have been 1356 g·ha?1·y?1, 11.5 g·ha?1·y?1, 1436 g·ha?1·y?1, and 44 g·ha?1·y?1 respectively. Phosphorus and nitrate concentrations were similar in the Exotic Forest and Native Forest 2 streams, but the Exotic Forest tended to lose smaller amounts because it yielded about 50% less water per unit area.

Over the 2‐y study, an estimated 47–70% of phosphorus losses and up to 83% nitrate losses occurred in large floods; 31% and 48% respectively were apparently lost from the hill pasture catchment in a single flood. Less than 20% of estimated phosphorus losses and as little as 1% of nitrate losses occurred at low flows.

Run‐off of phosphorus and nitrate was spasmodic, and this should be considered in assessing the impact of surface run‐off on the biology and chemistry of receiving waters.  相似文献   

9.
The flux of ammonia, phosphate, silica and radon-222 from Potomac tidal river and estuary sediments is controlled by processes occurring at the sediment-water interface and within surficial sediment. Calculated diffusive fluxes range between 0·6 and 6·5 mmol m?2 day?1 for ammonia, 0·020 and 0·30 mmol m?2 day?1 for phosphate, and 1·3 and 3·8 mmol m?2 day?1 for silica. Measured in situ fluxes range between 1 and 21 mmol m?2 day?1 for ammonia, 0·1 and 2·0 mmol m?2 day?1 for phosphate, and 2 and 19 mmol m?2 day?1 for silica. The ratio of in situ fluxes to diffusive fluxes (flux enhancement) varied between 1·6 and 5·2 in the tidal river, between 2·0 and 20 in the transition zone, and from 1·3 to 5·1 in the lower estuary. The large flux enhancements from transition zone sediments are attributed to macrofaunal irrigation. Nutrient flux enhancements are correlated with radon flux enhancements, suggesting that fluxes may originate from a common region and that nutrients are regenerated within the upper 10–20 cm of the sediment column.The low fluxes of phosphate from tidal viver sediments reflect the control benthic sediment exerts on phosphorus through sorption by sedimentary iron oxyhydroxides. In the tidal river, benthic fluxes of ammonia and phosphate equal one-half and one-third of the nutrient input of the Blue Plains sewage treatment plant. In the tidal Potomac River, benthic sediment regeneration supplies a significant fraction of the nutrients utilized by primary producers in the water column during the summer months.  相似文献   

10.
Anchovy biomass and copepod standing stocks and growth rates on the Agulhas Bank were compared during the peak spawning period (November) in 1988 and 1989. In 1988, copepod biomass over the western Agulhas Bank was low (1,0 g dry mass·m?2) relative to anchovy biomass there (14,7 g dry mass·m?2). In November 1989 in the same area, fish biomass was much lower (5,7 g dry mass·m?2), following a recruitment failure, and copepod biomass was higher (2,4 g dry mass·m?2), possibly as a result of lesser predation by anchovy. By contrast, the eastern Agulhas Bank had a larger biomass of copepods (4–6 g dry mass·?2) and a lower biomass of anchovy during both years. Knowing, from laboratory studies, that a prey biomass of 0,78 g·m?2 is required for fish to obtain their daily maintenance ration, it is suggested that spawning on the western Agulhas Bank was food-limited in 1988. Copepods on the western Bank may be replaced by local growth or transport from the eastern Bank. Growth rates of copepods on the western Bank were 10–50 per cent of maximum in 1988, but total production (c. 100 mg dry mass·m?2·day?1) was low, primarily because biomass was low and less than the rate of consumption by anchovy (243 mg copepod dry mass·m?2·day?1). On the eastern Bank, copepod production exceeded anchovy consumption and it is concluded that the flux of copepod biomass onto the western Bank may be as important as local growth in replenishing copepod stocks there. Feeding conditions for anchovy on the western Agulhas Bank are often marginal compared to the situation on the eastern Bank, and it is suggested that the selection of the western Bank as the major spawning area is related more to the success of transport and survival of eggs and larvae on the West Coast recruiting grounds than to feeding conditions per se.  相似文献   

11.
Oxy-anionic species of V, As, Se, Mo, Sb, Te and W were measured in solution and suspension in samples obtained during several cruises in the Dutch Wadden Sea, the offshore region of the Southern Bight (North Sea) and in the estuaries of the Rhine and Scheldt. Dissolved concentrations at salinities above 34·5 × 10?3 ( = 34·5%. S) agreed generally well with published open ocean values. It is suggested that Se speciation differs from the open ocean.In the Wadden Sea, concentrations of V, Se, Mo and Sb were linearly related to salinity (10–35 × 10?3). The good agreement between measured and extrapolated values at a salinity of 0·5 × 10?3 suggests conservative behaviour in the Rhine estuary (with residence time of freshwater in the order of a few days).Dissolved concentration vs. salinity plots in the Scheldt estuary (residence time 2–3 months) showed pronounced minima and maxima. These occurred in the low or medium salinity range for V, As and Sb. Linear behaviour was observed for Se and Mo (in some cases, relatively large differences between cruises were detected). Deviations from linearity in the plots are interpreted in terms of thermodynamic equilibrium conditions involving species with different solubilities (V), local input from land (As, Se, Sb, Te) and removal from solution (As), probably through coprecipitation with Fe(OH)3.In the offshore samples, the contributions of particulate forms to the total element concentrations were small (<15%). At higher SPM concentrations (about 30 mg dm?3), this percentage remained small for Se, Mo and Sb (<15%); it was substantial for V and As (25–50%).  相似文献   

12.
An in situ chamber of volume 3881 and bottom area 0·64 m2 was used to determine the flux of oxygen and inorganic nutrients across an estuarine sediment-water interface over a 65-day period. Over the first 7 days, oxygen uptake was 378 mg m?2 day?1 and the rates of ammonium and phosphate release were 2·22 and 0·34 mg at. m?2 day?1, respectively. The water became anoxic in 14 days.The rates of flux in a similar chamber containing only detritus recently settled from the water column were 371 mg m?2 day?1 (oxygen), 1·66 mg at. m?2 day?1 (ammonium) and 0 12 mg at. m?2 day?1 (phosphate), demonstrating that detritus contributes substantially to exchange across the sediment-water interface.The evolution of the two chambers was similar over the latter part of the experimental period. A third chamber containing only water exhibited very minor changes.The role of detritus in nutrient recycling at the sediment-water interface is discussed in relation to the productivity of shallow water bodies such as the estuary in which the experiment was conducted, which itself undergoes periodic deoxygenation during prolonged stratification. The measured flux of nitrogen across the interface was found to represent approximately 31% of the mean daily phytoplankton requirement.  相似文献   

13.
By simulating an upwelling event in a laboratory microcosm, it was possible to promote the development of a natural and diverse planktonic community. An initial bacterioplankton community which developed in response to phytoplankton growth was dominated by small coccoid forms (0,14–0,2 μm3) of the genera Vibrio and Pseudomonas. This group was heavily exploited by the heterotrophic microflagellate Pseudobodo sp. (30 μm3). Later, the bacterioplankton community was dominated by large rods (0,7 μm3) which the flagellates seemed unable to exploit. A Lotka-Volterra predator-prey model fitted to the observed data indicated that the flagellates consumed 2,4 times their carbon body mass per day or 19 bacteria·flagellate?1·h?1 when prey were not limiting. Clearance rates were inversely proportional to prey density and ingestion rate, ranging from 2 × 10?3 to 20 × 10?3) μ?·flagellate?1·h?1. At typical field densities of bacteria and heterotrophic flagellates in the southern Benguela region, between 5 and 30 percent of the water column could be cleared per day. Specific growth rates of the flagellates were positively related to prey density, the maximal rate being 0,84 · d?1. Their initially faster growth rates allowed bacteria to increase in numbers despite predation. The growth yield of the flagellates (34–36 per cent) was also positively related to food density. Such low values suggest inefficient transfer of carbon to higher trophic orders but considerable nitrogen regeneration. Nitrogen excretion rates were approximately 6–7 μg N·mg dry weight?1·h?1, comparable to other flagellates but faster than ciliates. These rates are comparable with in situ measurements of NH+4-N excretion in pycnoclinal regions based on 15N isotope studies but are only about 20 per cent of measured rates in surface waters. This is interpreted to mean that, in pycnoclinal regions where the relative input of "new" nitrogen is high, there are few regenerative steps and the model describes them satisfactorily. In surface waters, observed rates of excretion can only be accounted for by many regenerative steps in a highly complex food chain in which the cumulative total of nitrogen excretion at each step amounts to that based on 15N labelling studies.  相似文献   

14.
The rocky intertidal zone around the city of Mar del Plata (SW Atlantic, 38° S–57° W) is characterized by dense mussel beds of Brachidontes rodriguezii. This intertidal community develops on natural and artificial hard substrates, including abrasion platforms in sewage‐impacted areas. A monitoring program, designed to assess the effect of sewage discharge on intertidal macrobenthic communities, has been conducted since 1997. During the spring season of 2008, a new spionid polychaete (Boccardia proboscidea) was found near the sewage outfall, forming large biogenic reefs. This is the first report of biogenic reefs being built by a non reef‐forming spionid polychaete in areas organically impacted by sewage discharges. The aim of this work was to evaluate the spatial–temporal dynamics (% cover and density of B. proboscidea) of these reefs. These biogenic reefs covered almost the entire impacted site, reaching a density of 650,000 ind·m?2. This phenomenon is unique in that there is no other record available worldwide of any other biogenic polychaete reefs that could be sewage‐induced. The presence and stability of these biogenic reefs is discussed in relation to increased organic contamination as a structuring factor.  相似文献   

15.
Multiple biotic and abiotic drivers regulate the balance between CO2 assimilation and release in surface waters. In the present study, we compared in situ measurements of plankton carbon metabolism (primary production and respiration) to calculated air–water CO2 fluxes (based on abiotic parameters) during 1 year (2008) in a hypereutrophic tropical estuary (Recife Harbor, NE Brazil – 08°03′S, 34°52′W) to test the hypothesis that high productivity leads to a net CO2 flux from the atmosphere. The calculated CO2 fluxes through the air–water interface (FCO2) were negative throughout the year (FCO2: –2 to –9 mmol C·m?2·day?1), indicating that Recife Harbor is an atmospheric CO2 sink. Respiration rates of the plankton community ranged from 2 to 45 mmol C·m?2·hr?1. Gross primary production ranged from 0.2 to 281 mmol C·m?2·hr?1, exceeding respiration during most of the year (net autotrophy), except for the end of the wet season, when the water column was net heterotrophic. The present results highlight the importance of including eutrophic tropical shallow estuaries in global air–water CO2 flux studies, in order to better understand their role as a sink of atmospheric CO2.  相似文献   

16.
In order to characterize our study area and to provide reference values to be used in the future to measure the changes produced by an increase in contamination, the concentrations of chlorinated hydrocarbons have been investigated in fifty-one samples of seawater, taken at four different depths: air-sea interface, surface, one metre and bottom waters, and in twenty-three samples of surface sediments from Blanca Bay, Argentina. Of eleven organochlorine compounds we were looking for (α BHC, lindane, heptachlor, δ BHC. aldrin, heptachlor epoxide, dieldrin, o-p′DDD, p-p′DDD, o-p′DDT and p-p′DDT), seven could be detected in seawater and three in surface sediments with the following mean concentrations: α-BHC=48·2 ng l?1; lindane=54·2 ng l?1; heptachlor=45·0 ng l?1; δ BHC=12·5 ng l?1; aldrin=61·8 ng l?1 and ΣDDT=67·0 ng l?1; and δ BHC=3·2 ng g?1; lindane=4·2 ng g?1 and heptachlor=1·0 ng g?1 for seawater, regarding the surface waters, and sediment samples, respectively.Concentration factors among the different water layers were also studied to see if there was any correlation between chlorinated hydrocarbon contents and the water depths from which the samples were taken. As a mean value, the air-sea interface water contains 18 times more of these compounds than that of the water near the bottom. A comparison of the values corresponding to seawater and surface sediments from our study area with those levels measured in samples from other geographic locations is also presented.With the purpose to detect a relationship between chlorinated hydrocarbon concentrations and the contents of particulate matter (PM) on the one hand, and particulate organic material (POM) on the other hand, four groups of samples containing different amounts of PM and POM, respectively were formed. From a comparison of the results obtained, lindane, heptachlor and δ BHC showed a tendency to lower concentrations in those samples containing little PM whereas α BHC and aldrin remained without important changes. No significant correlation was found between organochlorine levels and contents of POM.  相似文献   

17.
Chemical extraction techniques show that the majority of the arsenic in North Atlantic deep-sea sediments is associated with an iron phase compositionally similar to that found in deep-sea ferromanganese nodules (As/Fe ~ 11 · 10?4) and is probably of seawater origin. Some sediments also contain As associated with Fe oxides produced by continental weathering. A minority (~8%) of the arsenic is of detrital origin but is not associated with Fe or Mn oxides; it has a content (1.7 ppm) similar to the average crustal abundance. In the Eastern Mediterranean Sea, near-shore sediments contain As associated with land-derived Fe oxides (As/Fe ~ 2 · 10?4), but As/Fe ratios increase to ~ 13 · 10?4 in deep-sea sediments as the contribution of seawater derived arsenic becomes dominant. Arsenic is enriched in metalliferous sediments (As/Fe ~ 20?50 · 10?4) but As/P ratios of metalliferous sediments, deep-sea ferromanganese nodules and deep-ocean water are all similar. Although a hydrothermal contribution cannot be discounted, it is likely that the arsenic is also of seawater origin, suggesting that hydrothermal iron oxyhydroxides remove As more efficiently from seawater than do iron phases (goethite) in deep-sea sediments and nodules. Arsenic accumulates in deep-sea sediments (~ 6 μg cm?2 10?3 yr?1) at sediments (~ 120 μg cm?2 10?3 yr?1) at rate sufficient to balance river input input (~3 · 1010 g yr?1). These estimates give an oceanic residence time for arsenic of 1–2 · 105 yr.  相似文献   

18.
The Cumberland Basin, a 118 km2 estuary at the head of the Bay of Fundy which has an average tidal range of about 11m, contains large tracts of salt marsh (15% of the area below highest high water). Low marsh (below about 0·9 m above mean high water) is composed almost exclusively of Spartina alterniflora while the vegetation on high marsh is more diverse but dominated by Spartina patens. Because of its higher elevation, high marsh is flooded infrequently for short periods by only extreme high tides. Low marsh is inundated much more frequently by water as much as 4m deep for periods as long as 4 h per tide. Temporal variability in the occurrence of extreme tides influences the flooding frequency of high marsh for any given month and year. Using a modification of Smalley's method, the mean annual net aerial primary production (NAPP) of low and high marsh is estimated to be 272 and 172 g C m?2, respectively. Vegetation turnover times average 1·0 and 2·0 y for low and high marsh, respectively. Because of abundant tidal energy, much of the low marsh production appears to be exported and distributed widely about the estuary. Since high levels of turbidity suppress phytoplankton production, salt marshes produce approximately half of the carbon fixed photosynthetically in the Cumberland Basin. It is concluded that salt marshes play a major ecological role in the Cumberland Basin.  相似文献   

19.
Roving creel surveys and aerial surveys of shore-angling were undertaken as part of a national investigation into linefishing in South Africa. Shore patrols utilized a random stratified sampling procedure to collect catch-and-effort data, and a questionnaire provided information on fishing effort, angler demographics, economics and attitudes towards current regulations. A total of 1 677 patrols, covering 19 616 km, was conducted between April 1994 and February 1996, during which period 9 523 anglers had their catches checked and 4 490 were interviewed. A further 16 497 km were covered by aerial surveys, when 22 609 anglers were counted. From the aerial surveys, angler densities were highest on the KwaZulu-Natal coast (4.65 anglers·km?1), followed by the Southern Cape coast (2.29 anglers·km?1), the Eastern Cape coast (0.36 anglers·km?1) and the West Coast (0.12 anglers·km?1). Catch rates varied from 1.5 kg·angler?1·day?1 on the Southern Cape coast to 0.45 kg·angler?1·day?1 on the KwaZulu-Natal coast. Total effort was estimated at 3.2×106 angler days·year?1 and the total catch was estimated at 4.5×106 fish·year?1 or 3 000 tons·year?1. Targeted species varied regionally, with elf Pomatomus saltatrix (29%) being the most sought after species on the KwaZulu-Natal coast, kob Argyrosomus japonicus (18%) on the Eastern Cape coast and galjoen Dichistius capensis on the Southern Cape coast (30%) and along the West Coast (50%). The catch composition by mass was dominated by P. saltatrix on the KwaZulu-Natal coast (29%), the Eastern Cape coast (26%), and on the Southern Cape coast (56%) and by white stumpnose Rhabdosargus globiceps (40%) on the West Coast. Although anglers generally supported the regulations currently governing the linefishery, the questionnaire results showed that knowledge and compliance of them was poor. A low level of law enforcement was found, except for in KwaZulu-Natal. Management of the linefishery is discussed in relation to the findings of this study.  相似文献   

20.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号