首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Cenozoic basaltic volcanism in southeastern China was related to the lithospheric extension and asthenospheric upwelling at the eastern Eurasian continental margin. The cenozoic basaltic rocks from this region can be grouped into three different series: tholeiitic basalts, alkali basalts, and picritic-nephelinitic basalts. Each basalt series has distinctive geochemical features and is not derived from a common source rock by different degrees of partial melting or from a common parental magma by fractional crystallization. The mineralogy, petrography, and major and trace-element geochemistry of the tholeiites are similar to oceanic island basalts, implying that the mantle source for these Chinese continental tholeiites was similar to that of the oceanic island basalts—an asthenospheric mantle. The alkali basalts and picritic-nephelinitic basalts are enriched in incompatible trace elements, and their geochemical features can be interpreted as a result of partial melting of an enriched lithospheric mantle, or the mixing products of an asthenospheric magma with a component derived from an enriched lithospheric mantle through thermal erosion at the base of the lithosphere. But the lack of a transitional rock type and continuous variational trends among these basalts suggests that the mixing between asthenospheric magmas and lithospheric magmas probably was not significant in the petrogenesis of the basalts from SE China. Low-degree partial melting of enriched lithospheric mantle alone can account for the observed geochemical data from these basalts.  相似文献   

2.
吉林省长白山地区新生代火山岩的特点及其成因   总被引:7,自引:5,他引:7  
田丰  汤德平 《岩石学报》1989,5(2):49-64
长白山地区新生代火山岩是一套玄武岩、粗面岩和钠闪碱流岩的双峰式火山岩组合。玄武岩类分别属于碱性玄武岩系列和拉斑玄武岩系列。奶头山期玄武岩是幔源原生岩浆直接喷发于地表的产物,其他各期玄武岩是幔源原生岩浆经历了一定程度分异作用的产物。粗面岩和钠闪碱流岩与玄武岩有成因联系,可能是玄武岩浆通过分离结晶作用而形成的。本区新生代火山岩是大陆裂谷构造环境下的产物,是在地幔增温和底辞上升过程中形成的。  相似文献   

3.
Mineralogical data, coupled with whole-rock major and trace element data of mafic xenoliths from two occurrences of the Egyptian Tertiary basalts, namely Abu Zaabal (AZ) near Cairo and Gabal Mandisha (GM) in the Bahariya Oases, are presented for the first time. Chemically, AZ basalts are sodic transitional, while those of GM are alkaline. In spite of the different petrographic and geochemical features of the host rocks, mafic xenoliths from the two occurrences are broadly similar and composed essentially of clinopyroxene, plagioclase, alkali feldspar, and Fe–Ti oxides. The analytical results of host rocks, xenoliths and their minerals suggest that the xenoliths are cognate to their host magmas rather than basement material. The mafic xenoliths are olivine-free and contain alkali feldspar contrary to the phenocryst assemblage of the host rocks, confirming that they are not cumulates from the host magma. The geochemical and mineralogical characteristics show that the precursor magmas of these xenoliths are more fractionated and possibly contaminated compared to those of the host rocks. Estimated crystallization conditions are  1–3 kbar for xenoliths from both areas, and temperature of  950–1100 °C vs. 920–1050 °C for AZ and GM, respectively. These cognate xenoliths probably crystallized from early-formed, highly-fractionated anhydrous magma batches solidified in shallow crustal levels, possibly underwent some AFC during their ascent, and later ripped-up during fresh magma pulses. The xenoliths, although rare, provide an evidence for the importance of crystal fractionation at early evolution of the Egyptian Tertiary basalts.  相似文献   

4.
Three distinct alkaline magmas, represented by shonkinite, lamprophyre and alkali basalt dykes, characterize a significant magmatic expression of rift-related mantle-derived igneous activity in the Mesoproterozoic Prakasam Alkaline Province, SE India. In the present study we have estimated emplacement velocities (ascent rates) for these three varied alkaline magmas and compared with other silicate magmas to explore composition control on the ascent rates. The alkaline dykes have variable widths and lengths with none of the dykes wider than 1 m. The shonkinites are fine- to medium-grained rocks with clinopyroxene, phologopite, amphibole, K-feldspar perthite and nepheline as essential minerals. They exhibit equigranular hypidiomorphic to foliated textures. Lamprophyres and alkali basalts characteristically show porphyritic textures. Olivine, clinopyroxene, amphibole and biotite are distinct phenocrysts in lamprophyres whereas olivine, clinopyroxene and plagioclase form the phenocrystic mineralogy in the alkali basalts. The calculated densities [2.54–2.71 g/cc for shonkinite; 2.61–2.78 g/cc for lamprophyre; 2.66–2.74 g/cc for alkali basalt] and viscosities [3.11–3.39 Pa s for shonkinite; 3.01–3.28 Pa s for lamprophyre; 2.72–3.09 Pa s for alkali basalt] are utilized to compute velocities (ascent rates) of the three alkaline magmas. Since the lamprophyres and alkali basalts are crystal-laden, we have also calculated effective viscosities to infer crystal control on the velocities. Twenty percent of crystals in the magma increase the viscosity by 2.7 times consequently decrease ascent rate by 2.7 times compared to the crystal-free magmas. The computed ascent rates range from 0.11–2.13 m/sec, 0.23–2.77 m/sec and 1.16–2.89 m/sec for shonkinite, lamprophyre and alkali basalt magmas respectively. Ascent rates increase with the width of the dykes and density difference, and decrease with magma viscosity and proportion of crystals. If a constant width of 1 m is assumed in the magma-filled dyke propagation model, then the sequence of emplacement velocities in the decreasing order is alkaline magmas (4.68–15.31 m/sec) > ultramafic-mafic magmas (3.81–4.30 m/sec) > intermediate-felsic magmas (1.76–2.56 m/sec). We propose that SiO2 content in the terrestrial magmas can be modeled as a semi-quantitative “geospeedometer” of the magma ascent rates.  相似文献   

5.
Hiroaki Sato 《Lithos》1977,10(2):113-120
Available NiO analyses of olivine in peridotites of probable mantle origin are consistent in giving values around 0.40 weight per cent. Assuming that basaltic magma forming from the mantle was in equilibrium with such peridotitic olivine, the NiO content of primary basaltic magmas is estimated to be about 0.030–0.050 weight per cent. The fractionation behaviour of nickel in basaltic magma due to the crystallization of olivine has been calculated using constant NiMg and FeMg exchange partition coefficients between olivine and magma. It is shown that the NiO content of both magma and olivine decreases by 50 per cent after fractional crystallization of 6–12 per cent of olivine. The nickel distribution in some basaltic rocks and olivines is examined in the light of these results, and it is suggested that basaltic magmas, such as some of the ocean-floor basalt and the Hawaiian tholeiite and alkali basalts, represent primary magmas from mantle peridotites.  相似文献   

6.
本文对华北克拉通晚中生代和新生代碱性玄武质岩石中的单斜辉石巨晶进行了主、微量元素和Sr-Nd同位素的综合研究,发现晚中生代和新生代单斜辉石巨晶存在明显的主、微量元素和同位素组成上的差异。新生代单斜辉石巨晶有Al-普通辉石和次透辉石两类;而中生代单斜辉石巨晶只有Al-普通辉石。新生代单斜辉石SiO_2含量高、REE配分型式为上凸型、LILE和放射性元素含量高,并具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成;而中生代单斜辉石SiO_2含量低、REE配分型式为LREE富集型、LILE和部分HFSE以及放射性元素含量低,并具有比寄主碱性玄武岩稍富集的Sr和Nd同位素组成;巨晶的结构、矿物成分和地球化学特征,以及Mg-Fe在熔体与单斜辉石间的分配状况皆说明,新生代碱性玄武岩中单斜辉石巨晶是碱性玄武岩浆在高压下结晶的,因此二者是同源的;而中生代单斜辉石巨晶是被寄主岩浆偶然捕获的捕虏晶,是不同源的。华北新生代单斜辉石巨晶存在于碱性玄武岩和拉斑玄武岩中,它们具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成,说明即使是碱性玄武岩也不能完全代表软流圈来源的原始岩浆,其在上升过程中或多或少存在同位素组成富集的物质的混入。同时,拉斑玄武岩不是碱性玄武质岩浆直接结晶分异的产物,亦不是完全由部分熔融程度的不同造成的。拉斑玄武岩中存在岩石圈地幔物质的贡献或是岩浆房内碱性玄武质岩浆受地壳混染作用的结果。  相似文献   

7.
Petrological and geochemical data for basic (alkali basalts and hawaiites) and silicic peralkaline rocks, plus rare intermediate products (mugearites and benmoreites) from the Pleistocene Boseti volcanic complex (Main Ethiopian Rift, East Africa) are reported in this work. The basalts are slightly alkaline or transitional, have peaks at Ba and Nb in the mantle-normalized diagrams and relatively low 87Sr/86Sr (0.7039–0.7044). The silicic rocks (pantellerites and comendites) are rich in sanidine and anorthoclase, with mafic phases being represented by fayalite-rich olivine, opaque oxides, aenigmatite and slightly Na-rich ferroaugite (ferrohedenbergite). These rocks were generated after prolonged fractional crystallization process (up to 90–95 %) starting from basaltic parent magmas at shallow depths and fO2 conditions near the QFM buffer. The apparent Daly Gap between mafic and evolved Boseti rocks is explained with a model involving the silicic products filling upper crustal magma chambers and erupted preferentially with respect to basic and intermediate products. Evolved liquids could have been the only magmas which filled the uppermost magma reservoirs in the crust, thus giving time to evolve towards Rb-, Zr- and Nb-rich peralkaline rhyolites in broadly closed systems.  相似文献   

8.
There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small uitramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-PI-OI-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and iow-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limabe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basaits. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts.  相似文献   

9.
Tholeiites accompanying a majority of alkali basalts are restricted to the highly productive central part of the CECV plume activity in Vogelsberg and Hessian Depression. They mainly occur as quartz tholeiites which according to experiments of partial melting and material balances are products of olivine tholeiitic primary melts. The differentiation from olivine to quartz tholeiitic melts took place in lower crustal magma chambers where olivine tholeiitic melt intruded due to a density comparable with that of the country rocks. The fractionation due to separation of olivine and some clinopyroxene caused contamination of tholeiite magmas by tonalitic partial melts from the wall rocks of the magma chambers. The latter process is indicated by relatively high Rb, K and Pb and low Nb concentrations and by Nd, Sr and Pb isotopes. Contaminating crustal melts, which roughly attained a proportion of 10%, contained very low 143Nd/144Nd ratios from a Nd/Sm fractionation as old as 2.6 Ga. This is the first evidence from mafic rocks of this high age in the lower crust beneath Central Europe. Modelling with incompatible elements allows to recognize olivine tholeiites as products of about 1% partial melting of plume rocks consisting of 35% primitive and 65% depleted mantle materials. The production of tholeiites other than alkali basalts is restricted to the highest plume activity and the largest fraction of MORB type source rocks. Received: 10 December 1999 / Accepted: 23 June 2000  相似文献   

10.
S. Harangi 《Lithos》1994,33(4):303-321
Early Cretaceous volcanic rocks (basanite to phonolite) from the Mecsek Mountains (South Hungary) represent the products of Late Mesozoic extension-related alkaline magmatism at the southern margin of the European plate. Two mafic groups have been distinguished: ankaramite-alkali basalt and Na-basanite-phonotephrite. Phonolites could have been formed from the Na-basanitic magma by low-pressure fractionation. The major and trace element characteristics of the Mecsek basalts are similar to those of alkaline basalts of other intraplate areas and have a St. Helena-type OIB affinity. The mantle source of the Mecsek volcanics could be similar to that proposed by Wilson and Downes (1991) as one of the mantle endmembers for extension-related Tertiary-Quaternary alkaline basalts in Europe. Geochemical modelling indicates that the primary magmas of the Na-basanite series were formed by about 4% partial melting, whereas ankaramites and alkali basalts originated by about 6% partial melting of a garnet-peridotite source.  相似文献   

11.
The opening of the North Atlantic Ocean began in the Late Paleocene and was accompanied by the eruption of submarine and subaerial basalts, which built up submarine plateau and ridges, islands, and volcanoes. The volcanic rocks are dominated by low-K tholeiitic basalts, which associate with almost coeval alkaline rocks (subalkali and alkali basalts and their derivatives, basanites, nephelinites, and others). The oldest alkaline volcanics (58–56 Ma) were formed during the opening of the oceanic rift at its shoulders, in northeastern Greenland and the western Norwegian shelf. It was recently found that 55–53 Ma-old alkali-ultramafic rocks are much more widespread at the eastern coast of Greenland than it was previously thought. The younger occurrences of alkali volcanism with pulses at 30, 10, 5 Ma, and up to the present day were formed on the young oceanic plate and newly formed islands and seamounts. To compare the oceanic and continental volcanism of this region, oceanic volcanics dredged during Cruise 10 of the R/V Akademik Kurchatov were reanalyzed using modern analytical methods (XRF and ICP-MS). This study showed that the oceanic and continental alkaline rocks are significantly different in petrochemical and geochemical characteristics, which is caused by differences in magma generation depths and compositions of the mantle source material. The primary continental alkaline magmas were initially more enriched in incompatible trace elements than oceanic ones. During the shallow-level differentiation of oceanic magmas, trace elements and alkalis could be accumulated in residual melts, but these processes occurred on a minor scale and depended on tectonic conditions.  相似文献   

12.
The volcanic rocks of Iceland are anomalous in their oxygen isotope content. Recent tholeiitic and transitional alkali basalts from Iceland range in (δO18 from 1·8 to 5δ7%. Most of the tholeiitic basalts and their phenocrysts are at least 1% lower in δO18 than unaltered basalts from other oceanic islands or oceanic ridges. The Icelandic basalts that resemble ridge basalts in δO18 also resemble them in major element chemistry. δO18 values of alkali olivine basalts are closest to those of other oceanic islands. Secondary alteration processes have lowered as well as raised the δO18 values of some Icelandic rocks, but such surface mechanisms cannot account for the distribution of oxygen isotopes in the Recent basalts of Iceland. Three mechanisms that could give rise to the low-O18 magmas are (1) exchange of oxygen between magma and low-O18 hydrothermally altered rock, (2) exchange with low-O18 meteoric water, or (3) an exceptional mantle under Iceland. None of the above models can satisfactorily account for all the observations.  相似文献   

13.
Epuptions of alkali and subalkali basalts occurred respectively during Paleogene, Neogene, and Quaternary in North China. They are interplate, non-oceanic basalts. The alkali basalts range from Ne-normative to Hy-normative basalts and the subalkali basalts belong to the continental tholeiites. Based on their distribution, geological ages and petrographic series the magmatic evolution of Cenozoic basaltic rocks in North China can be divided into three stages. Geochemical data from this study indicate that Cenozoic basaltic magmas of North China were derived from two different mantle sources.  相似文献   

14.
Felsic alkalic rocks are a minor component of many ocean island volcanic suites, and include trachyte and phonolite as well as various types of alkaline and peralkaline rhyolite. However, there is considerable debate on the nature of their formation; for example, are they formed by partial melting of anomalous mantle or the final products of fractional crystallization of mafic magmas. The phonolites and foidal phonolites on Rarotonga were formed by low pressure crystal fractionation of two chemically distinct parental magmas. Low silica and high silica mafic magmas produced a basanite-foidal phonolite series and an alkali basalt-phonolite series, respectively. The foidal phonolite composition evolved from the low silica mafic magmas by approximately 60% fractionation of titanaugite + leucite + nepheline + magnetite + apatite. Fractionation continued with the crystallization of aegirine-augite + nepheline + kaersutite + magnetite + apatite. The phonolites formed from the alkali basalts by approximately 40% fractionation of kaersutite + titanaugite + Fe-Ti oxide + plagioclase + apatite and continued to evolve further by fractionation of anorthoclase + nepheline + aegerine-augite + Fe-Ti oxides. As the magmas fractionated in both suites, their overall viscosities (solid + liquid) increased until a point was reached whereby viscosity inhibited the eruption of magmas with compositions intermediate between the mafic rocks and the felsic rocks. However, the magmas continued to fractionate under static conditions with the residual fluid becoming foidal phonolitic in the low silica suite or phonolitic in the high silica suite. These phonolitic liquids, as a result of an increase in volatiles and enrichment of alkalis over aluminum, would actually have a lower viscosity than the intermediate liquids. This decrease in viscosity and the switch from a magma chamber being predominantly a liquid with suspended solids to a solid crystalline network with an interstitial liquid enabled phonolitic liquids to migrate, pool, and eventually erupt on the surface.  相似文献   

15.
There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small ultramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-Pl-Ol-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and low-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limahe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basalts. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts.  相似文献   

16.
The Niutoushan basaltic cone, consisting of subalkali (quartz-tholeiite and olivine-tholeiite) and alkali basalts, is Late Tertiary in age. Its major characteristics are generalized as follows:
  1. Both early subalkali and late alkali bali basalts are formed under the same geological environment.
  2. The continuity in chemical composition from subalkali to alkali and the low FeO/MgO in alkali basalts show that they are the products of cognate magmatic differentiation.
  3. The change from low REE abundance and weak enrichment of LREE in subalkali to high REE abundance and strong enrichment of LREE in alkali basalts indicates obvious REE enrichment and fractionation during magmatic differentiation. Weak positive Eu anomalies in the REE patterns are indicative of their formation under low oxygen fugacity conditions.
  4. According to the calculated values, 70–75% of the primary olivine tholeiitic magma had been separated as subalkaline basaltic magma, the rest residual magma became alkaline basaltic magma. This result is consistent to the field observation that the outcrop area of subalkali basalts is four times as much as that of alkali basalts.
  5. The basaltic rocks of Niutoushan show an S-type distribution straddling the thermal barrier on Ol′-Ne′-Qu′ diagram and an evolution tendency for Ne to increase with increasing FeO/MgO. This is in agreement with the melting experimental data on olivine basalts at 10–20 kb.
  6. Mantle-derived inclusions (spinel lherzolite) in this area occur in both alkali olivine basalts and olivine tholeiites. The latter is of extremely rare occurrence. The formation temperature and pressure of the inclusions in alkalibasalts and olivine tholeiites have been calculated. The results show that the alkaline basaltic magma was separated from the subalkaline basaltic magma at about 20 kb.
Basaltic rocks in Niutoushan were formed through the so-called “high pressure differentiation”, that is, at about 20 kb the crystallization of clinopyroxene and orthpyroxene resulted in the separation of subalkaline basaltic magma from the primary olivine tholeiitic magma, and then the residue gradually became alkaline olivine basaltic magma.  相似文献   

17.
ABSTRACT

Clinopyroxene megacrysts in volcanic rocks can provide substantial information on the evolution of the magmatic system at depth. Although considerable attention has been paid to these crystals, their origin is not yet completely resolved. The clinopyroxene megacrysts worldwide can be divided into two major types in general: the green Cr-diopside type and the black Al-augite type. There is a consensus view that the Cr-diopside megacrysts are mantle xenocrysts, whereas two contrasting opinions exist regarding the origin of the black Al-augite megacrysts. One favours a cognate origin, viewing them as crystallization products of the host magmas under high-pressure; while the other argues that they are xenocrysts crystallized from previous alkali basalts or fragments of mantle peridotites, pyroxenites or pegmatite veins. A review study on the clinopyroxene megacrysts in Meso-Cenozoic volcanic rocks from the North China Craton (NCC) and their comparison with those worldwide provides new constraints on their origin, namely, the Cr-diopside megacrysts, as previously thought, are all xenocrysts, representing disaggregated clinopyroxene crystals from clinopyroxene-rich mantle rocks. Contrary to the formerly proposed cognate origin, the Al-augite megacrysts are also xenocrysts, having no direct genetic link to their host rocks. They crystallized from melts that have formed earlier than the host magmas, and probably accumulated in a magma chamber or occurred as sheets or veins filling a fracture network surrounding a magma chamber in the upper mantle. During the subsequent eruption of the host lavas, these previously formed crystals were incorporated into the magma and were brought up to the surface.  相似文献   

18.
Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes appear to require development of relatively large magma chambers in the crust that are sustained by large basalt fluxes from the mantle. The lack of extensive crustal contamination and mixing in the Miocene lavas may be related to a decreased basalt flux or initiation of blockfaulting that prevented pooling of basaltic magma in the crust.  相似文献   

19.
Certain petrological features of oceanic volcanic and plutonic rocks are not completely consistent with previously proposed models of crystal fractionation or magma mixing. For example, Sr is often higher in the differentiated basalts of a suite of aphyric rocks than in the relatively primitive basalts even though the differentiated basalts have apparently been produced by crystallization of large amounts of plagioclase with olivine and clinopyroxene. Additionally, oceanic basalts and gabbroic rocks often contain plagioclase crystals in excess of the appropriate cotectic proportions. Certain differentiated oceanic basaltic glasses and aphyric rocks crystallize plagioclase as the liquidus mineral, which would seem inconsistent with the strongly cotectic nature of the olivine + plagioclase + liquid surface.It is proposed here that plagioclase in mid-ocean ridge magma chambers separates from the basaltic liquid that it crystallizes in at a slower rate than does co-crystallizing olivine or pyroxene. Magma mixing in which a portion of the plagioclase remains suspended in the liquid during crystallization results in much more complex liquid lines of descent in mixed magmas and appears to resolve the apparent discrepancies noted above.  相似文献   

20.
赵勇伟  樊祺诚 《岩石学报》2012,28(4):1119-1129
哈拉哈河-绰尔河第四纪火山地处重力梯度带上的大兴安岭中段。火山岩主要类型为钠质系列碱性橄榄玄武岩。火山岩大离子亲石元素和轻稀土元素相对富集,轻重稀土分异程度弱((La/Yb)N=8~12),稀土元素和微量元素配分曲线与大同碱性玄武岩平行,总体上表现出与OIB相似的特征。在Sr-Nd-Pb同位素组成特征上表现出亏损地幔的特点(εNd=4.8~5.9),接近MORB的源区范围。哈拉哈河-绰尔河第四纪火山岩岩浆由轻稀土富集的石榴子石二辉橄榄岩低程度(8%~15%)部分熔融产生,火山岩高MgO(>9%)、Ni(>200×10-6)和Mg#(60~70),表明它们是较原始的岩浆,岩浆上升过程经历了橄榄石和辉石为主的弱分离结晶作用,没有受到地壳物质明显混染。区域伸展作用引发软流圈地幔上涌是哈拉哈河-绰尔河第四纪火山的岩浆成因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号