首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study is to produce landslide susceptibility map of a landslide-prone area (Daguan County, China) by evidential belief function (EBF) model and weights of evidence (WoE) model to compare the results obtained. For this purpose, a landslide inventory map was constructed mainly based on earlier reports and aerial photographs, as well as, by carrying out field surveys. A total of 194 landslides were mapped. Then, the landslide inventory was randomly split into a training dataset; 70% (136 landslides) for training the models and the remaining 30% (58 landslides) was used for validation purpose. Then, a total number of 14 conditioning factors, such as slope angle, slope aspect, general curvature, plan curvature, profile curvature, altitude, distance from rivers, distance from roads, distance from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), and topographic wetness index (TWI) were used in the analysis. Subsequently, landslide susceptibility maps were produced using the EBF and WoE models. Finally, the validation of landslide susceptibility map was accomplished with the area under the curve (AUC) method. The success rate curve showed that the area under the curve for EBF and WoE models were of 80.19% and 80.75% accuracy, respectively. Similarly, the validation result showed that the susceptibility map using EBF model has the prediction accuracy of 80.09%, while for WoE model, it was 79.79%. The results of this study showed that both landslide susceptibility maps obtained were successful and would be useful for regional spatial planning as well as for land cover planning.  相似文献   

2.
This study aimed to investigate the parameter effects in preparing landslide susceptibility maps with a data-driven approach and to adapt this approach to analytical hierarchy process (AHP). For this purpose, at the first stage, landslide inventory of an area located in the Western Black Sea region of Turkey covering approximately 567?km2 was prepared, and a total of 101 landslides were mapped. In order to assess the landslide susceptibility, a total of 13 parameters were considered as the input parameters: slope, aspect, plan curvature, topographical elevation, vegetation cover index, land use, distance to drainage, distance to roads, distance to structural elements, distance to ridges, stream power index, sediment transport capacity index, and wetness index. AHP was selected as the major assessment methodology since the adapted approach and AHP work in data pairs. Adapted to AHP, a similarity relation?Cbased approach, namely landslide relation indicator (LRI) for parameter selection method, was also proposed. AHP and parametric effect analyses were performed by the proposed approach, and seven landslide susceptibility maps were produced. Among these maps, the best performance was gathered from the landslide susceptibility map produced by 9 parameter combinations using area under curve (AUC) approach. For this map, the AUC value was calculated as 0.797, while the others ranged between 0.686 and 0.771. According to this map, 38.3?% of the study area was classified as having very low, 8.5?% as low, 15.0?% as moderate, 20.3?% as high, and 17.9?% as very high landslide susceptibility, respectively. Based on the overall assessments, the proposed approach in this study was concluded as objective and applicable and yielded reasonable results.  相似文献   

3.

The main purpose of this study was to compare and evaluate the performance of two multicriteria models for landslide susceptibility assessment in Constantine, north-east of Algeria. The landslide susceptibility maps were produced using the analytic hierarchy process (AHP) and Fuzzy AHP (FAHP) via twelve landslides conditioning factors, including the slope gradient, lithology, land cover, distance from drainage network, distance from the roads, distance from faults, topographic wetness index, stream power index, slope curvature, Normalized Difference Vegetation Index, slope aspect and elevation. In this study, the mentioned models were used to derive the weighting value of the conditioning factors. For the validation process of these models, the receiver operating characteristic analysis, and the area under the curve (AUC) were applied by comparing the obtained results to The landslide inventory map which prepared using the archives of scientific publications, reports of local authorities, and field survey as well as analyzing satellite imagery. According to the AUC values, the FAHP model had the highest value (0.908) followed by the AHP model (0.777). As a result, the FAHP model is more consistent and accurate than the AHP in this case study. The outcome of this paper may be useful for landslide susceptibility assessment and land use management.

  相似文献   

4.
Landslides are natural disasters often activated by interaction of different controlling environmental factors, especially in mountainous terrains. In this research, the landslide susceptibility map was developed for the Sarkhoun catchment using Index of Entropy (IoE) and Dempster–Shafer (DS) models. For this purpose, 344 landslides were mapped in GIS environment. 241 (70%) out of the landslides were selected for the modeling and the remaining (30%) were employed for validation of the models. Afterward, 10 landslide conditioning factor layers were prepared including land use, distance to drainage, slope gradient, altitude, lithology, distance to roads, distance to faults, slope aspect, Topography Wetness Index, and Stream Power Index. The relationship between the landslide conditioning factors and landslide inventory maps was determined using the IoE and DS models. In order to verify the models, the results were compared with validation landslide data not employed in training process of the models. Accordingly, Receiver Operating Characteristic (ROC) curves were applied, and Area Under the Curve (AUC) was calculated for the obtained susceptibility maps using the success (training data) and prediction (validation data) rate curves. The land use was found to be the most important factor in the study area. The AUC are 0.82, and 0.81 for success rates of the IoE, and DS models, respectively, while the prediction rates are 0.76 and 0.75. Therefore, the results of the IoE model are more accurate than the DS model. Furthermore, a satisfactory agreement is observed between the generated susceptibility maps by the models and true location of the landslides.  相似文献   

5.
This research work deals with the landslide susceptibility assessment using Analytic hierarchy process (AHP) and information value (IV) methods along a highway road section in Constantine region, NE Algeria. The landslide inventory map which has a total of 29 single landslide locations was created based on historical information, aerial photo interpretation, remote sensing images, and extensive field surveys. The different landslide influencing geoenvironmental factors considered for this study are lithology, slope gradient, slope aspect, distance from faults, land use, distance from streams, and geotechnical parameters. A thematic layer map is generated for every geoenvironmental factor using Geographic Information System (GIS); the lithological units and the distance from faults maps were extracted from the geological database of the region. The slope gradient, slope aspect, and distance from streams were calculated from the Digital Elevation Model (DEM). Contemporary land use map was derived from satellite images and field study. Concerning the geotechnical parameters maps, they were determined making use of the geotechnical data from laboratory tests. The analysis of the relationships between the landslide-related factors and the landslide events was then carried out in GIS environment. The AUC plot showed that the susceptibility maps had a success rate of 77 and 66% for IV and AHP models, respectively. For that purpose, the IV model is better in predicting the occurrence of landslides than AHP one. Therefore, the information value method could be used as a landslide susceptibility mapping zonation method along other sections of the A1 highway.  相似文献   

6.
The present study is aimed at producing landslide susceptibility map of a landslide-prone area (Anfu County, China) by using evidential belief function (EBF), frequency ratio (FR) and Mahalanobis distance (MD) models. To this aim, 302 landslides were mapped based on earlier reports and aerial photographs, as well as, carrying out several field surveys. The landslide inventory was randomly split into a training dataset (70%; 212landslides) for training the models and the remaining (30%; 90 landslides) was cast off for validation purpose. A total of sixteen geo-environmental conditioning factors were considered as inputs to the models: slope degree, slope aspect, plan curvature, profile curvature, the new topo-hydrological factor termed height above the nearest drainage (HAND), average annual rainfall, altitude, distance from rivers, distance from roads, distance from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), soil texture, and land use/cover. The validation of susceptibility maps was evaluated using the area under the receiver operating characteristic curve (AUROC). As a results, the FR outperformed other models with an AUROC of 84.98%, followed by EBF (78.63%) and MD (78.50%) models. The percentage of susceptibility classes for each model revealed that MD model managed to build a compendious map focused at highly susceptible areas (high and very high classes) with an overall area of approximately 17%, followed by FR (22.76%) and EBF (31%). The premier model (FR) attested that the five factors mostly influenced the landslide occurrence in the area: NDVI, soil texture, slope degree, altitude, and HAND. Interestingly, HAND could manifest clearer pattern with regard to landslide occurrence compared to other topo-hydrological factors such as SPI, STI, and distance to rivers. Lastly, it can be conceived that the susceptibility of the area to landsliding is more subjected to a complex environmental set of factors rather than anthropological ones (residential areas and distance to roads). This upshot can make a platform for further pragmatic measures regarding hazard-planning actions.  相似文献   

7.
The current research presents a detailed landslide susceptibility mapping study by binary logistic regression, analytical hierarchy process, and statistical index models and an assessment of their performances. The study area covers the north of Tehran metropolitan, Iran. When conducting the study, in the first stage, a landslide inventory map with a total of 528 landslide locations was compiled from various sources such as aerial photographs, satellite images, and field surveys. Then, the landslide inventory was randomly split into a testing dataset 70 % (370 landslide locations) for training the models, and the remaining 30 % (158 landslides locations) was used for validation purpose. Twelve landslide conditioning factors such as slope degree, slope aspect, altitude, plan curvature, normalized difference vegetation index, land use, lithology, distance from rivers, distance from roads, distance from faults, stream power index, and slope-length were considered during the present study. Subsequently, landslide susceptibility maps were produced using binary logistic regression (BLR), analytical hierarchy process (AHP), and statistical index (SI) models in ArcGIS. The validation dataset, which was not used in the modeling process, was considered to validate the landslide susceptibility maps using the receiver operating characteristic curves and frequency ratio plot. The validation results showed that the area under the curve (AUC) for three mentioned models vary from 0.7570 to 0.8520 $ ({\text{AUC}}_{\text{AHP}} = 75.70\;\% ,\;{\text{AUC}}_{\text{SI}} = 80.37\;\% ,\;{\text{and}}\;{\text{AUC}}_{\text{BLR}} = 85.20\;\% ) $ ( AUC AHP = 75.70 % , AUC SI = 80.37 % , and AUC BLR = 85.20 % ) . Also, plot of the frequency ratio for the four landslide susceptibility classes of the three landslide susceptibility models was validated our results. Hence, it is concluded that the binary logistic regression model employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of study area. Meanwhile, the results obtained in this study also showed that the statistical index model can be used as a simple tool in the assessment of landslide susceptibility when a sufficient number of data are obtained.  相似文献   

8.
Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning.  相似文献   

9.
Landslides are introduced as regional movements, which influence different engineering structures such as roads, railways, and dams and cause the person’s death. Identification of landslide zones may decrease the financial losses and human injuries or deaths. This study tries to achieve a landslide susceptibility mapping in Cham-gardalan catchment by weighting the main criteria and the membership functions of fuzzy logic. For this, we applied the best relationship function between the presence and absence of landslides as well as a collection of the elements. At first, the landslide points were identified by the means of some components those of satellite images, topographical (1:50,000) and geographical (1:100,000) maps, field visits, and Google Earth software followed by the preparation of landslide distribution maps. Then, all effective landslide factors such as percentage of slope, slope aspect, height, geology, land uses, distance from roads, distance from drainages, distance from breakage, and precipitation map have been utilized in order to conduct the fuzzy analyses. Landslide susceptibility map was performed by fuzzy operators (Gamma, Product, Sum, Or, And) in the study area. After fuzzificating and weighting, the effective criteria of landslides were determined through fuzzy Gamma operators with the landaus of 0.2, 0.5, 0.8, and 0.9 and by comparing final maps for making an appropriate model of landslide susceptibility mapping. The regional susceptibility map represents the landslide-prone areas in five categories those of very low, low, moderate, high, and very high. Our results indicated that among the applied operators, Gamma with landau of 0.9 can be used as an appropriate method for mapping the landslide susceptibility due to the suitable fuzzification of given criteria based on landslide distribution maps. In addition, the elements of road, percentage of slope, distance from drainage, and geology were recognized as the most important factors for occurring the landslides.  相似文献   

10.
The northeast part of Turkey is prone to landslides because of the climatic conditions, as well as geologic and geomorphologic characteristics of the region. Especially, frequent landslides in the Rize province often result in significant damage to people and property. Therefore, in order to mitigate the damage from landslides and help the planners in selecting suitable locations for implementing development projects, especially in large areas, it is necessary to scientifically assess susceptible areas. In this study, the frequency ratio method and the analytical hierarchy process (AHP) were used to produce susceptibility maps. Especially, AHP gives best results because of allowing better structuring of various components, including both objective and subjective aspects and comparing them by a logical and thorough method, which involves a matrix-based pairwise comparison of the contribution of different factors for landslide. For this purpose, lithology, slope angle, slope aspect, land cover, distance to stream, drainage density, and distance to road were considered as landslide causal factors for the study area. The processing of multi-geodata sets was carried out in a raster GIS environment. Lithology was derived from the geological database and additional field studies; slope angle, slope aspect, distance to stream, distance to road and drainage density were invented from digital elevation models; land cover was produced from remote sensing imagery. In the end of study, the results of the analysis were verified using actual landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.  相似文献   

11.
The objective of this study is to perform a preliminary national-scale assessment of the landslide susceptibility of rock-cut slopes along expressways in Korea. A geographic information system (GIS) database was compiled based on data from topographical and geological maps, and rock-cut slope data, including the locations of past landslides. Seven factors (i.e., slope height, slope length, slope gradient, upper slope gradient, lithology, distance from nearest fault, and dip direction of slope) were extracted from the GIS database to assess the relationship between each factor and landslide events. Weight of evidence (WOE), analytic hierarchy process (AHP), and fuzzy logic methods, as well as hybrid methods, were used to establish the rating of classes for each factor, weightings for the factors, and to combine multiple factor layers into landslide-susceptibility maps. A comparison of the results obtained using several different methods, based on the area under curve technique, revealed that the WOE method showed the highest accuracy of 74%. The annual cost of traffic congestion resulting from slope failures was evaluated to identify those rock-cut slopes where detailed investigations and landslide warning systems are required.  相似文献   

12.
Landslides every year impose extensive damages to human beings in various parts of the world; therefore, identifying prone areas to landslides for preventive measures is essential. The main purpose of this research is applying different scenarios for landslide susceptibility mapping by means of combination of bivariate statistical (frequency ratio) and computational intelligence methods (random forest and support vector machine) in landslide polygon and point formats. For this purpose, in the first step, a total of 294 landslide locations were determined from various sources such as aerial photographs, satellite images, and field surveys. Landslide inventory was randomly split into a testing dataset 70% (206 landslide locations) for training the different scenarios, and the remaining 30% (88 landslides locations) was used for validation purposes. To providing landslide susceptibility maps, 13 conditioning factors including altitude, slope angle, plan curvature, slope aspect, topographic wetness index, lithology, land use/land cover, distance from rivers, drainage density, distance from fault, distance from roads, convergence index, and annual rainfall are used. Tolerance and the variance inflation factor indices were used for considering multi-collinearity of conditioning factors. Results indicated that the smallest tolerance and highest variance inflation factor were 0.31 and 3.20, respectively. Subsequently, spatial relationship between classes of each landslide conditioning factor and landslides was obtained by frequency ratio (FR) model. Also, importance of the mentioned factors was obtained by random forest (RF) as a machine learning technique. The results showed that according to mean decrease accuracy, factors of altitude, aspect, drainage density, and distance from rivers had the greatest effect on the occurrence of landslide in the study area. Finally, the landslide susceptibility maps were produced by ten scenarios according to different ensembles. The receiver operating characteristics, including the area under the curve (AUC), were used to assess the accuracy of the models. Results of validation of scenarios showed that AUC was varying from 0.668 to 0.749. Also, FR and seed cell area index indicators show a high correlation between the susceptibility classes with the landslide pixels and field observations in all scenarios except scenarios 10RF and 10SVM. The results of this study can be used for landslides management and mitigation and development activities such as construction of settlements and infrastructure in the future.  相似文献   

13.
Landslide susceptibility maps are vital for disaster management and for planning development activities in the mountainous country like Nepal. In the present study, landslide susceptibility assessment of Mugling?CNarayanghat road and its surrounding area is made using bivariate (certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a landslide inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75?%) were randomly selected for building landslide susceptibility models, while the remaining 80 (25?%) were used for validating the models. The effectiveness of landslide susceptibility assessment using GIS and statistics is based on appropriate selection of the factors which play a dominant role in slope stability. In this case study, the following landslide conditioning factors were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness index; stream power index; and sediment transport index. These factors were prepared from topographic map, drainage map, road map, and the geological map. Finally, the validation of landslide susceptibility map was carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation results showed that the susceptibility map using index of entropy model with AUC value of 0.9016 has highest prediction accuracy of 90.16?%. Similarly, the susceptibility maps produced using logistic regression model and certainty factor model showed 86.29 and 83.57?% of prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all the three models performed more than 80?% accuracy (i.e. 89.15?% for IOE model, 89.10?% for LR model and 87.21?% for CF model). Hence, it is concluded that all the models employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of Mugling?CNarayanghat road section. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

14.
The purpose of this study is to assess the susceptibility of landslides in parts of Western Ghats, Kerala, India, using a geographical information system (GIS). Landslide inventory of the area was made by detailed field surveys and the analysis of the topographical maps. The landslide triggering factors are considered to be slope angle, slope aspect, slope curvature, slope length, distance from drainage, distance from lineaments, lithology, land use and geomorphology. ArcGIS version 8.3 was used to manipulate and analyse all the collected data. Probabilistic-likelihood ratio was used to create a landslide susceptibility map for the study area. The result was validated using the Area under Curve (AUC) method and temporal data of landslide occurrences. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. As the result, the success rate of the model was (84.46%) and the prediction rate of the model was (82.38%) shows high prediction accuracy. In the reclassified final landslide susceptibility zone map, 5.68% of the total area is classified as critical in nature. The landslide susceptibility map thus produced can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

15.
In the Three Gorges of China, there are frequent landslides, and the potential risk of landslides is tremendous. An efficient and accurate method of generating landslide susceptibility maps is very important to mitigate the loss of lives and properties caused by these landslides. This paper presents landslide susceptibility mapping on the Zigui-Badong of the Three Gorges, using rough sets and back-propagation neural networks (BPNNs). Landslide locations were obtained from a landslide inventory map, supported by field surveys. Twenty-two landslide-related factors were extracted from the 1:10,000-scale topographic maps, 1:50,000-scale geological maps, Landsat ETM + satellite images with a spatial resolution of 28.5 m, and HJ-A satellite images with a spatial resolution of 30 m. Twelve key environmental factors were selected as independent variables using the rough set and correlation coefficient analysis, including elevation, slope, profile curvature, catchment aspect, catchment height, distance from drainage, engineering rock group, distance from faults, slope structure, land cover, topographic wetness index, and normalized difference vegetation index. The initial, three-layered, and four-layered BPNN were trained and then used to map landslide susceptibility, respectively. To evaluate the models, the susceptibility maps were validated by comparing with the existing landslide locations according to the area under the curve. The four-layered BPNN outperforms the other two models with the best accuracy of 91.53 %. Approximately 91.37 % of landslides were classified as high and very high landslide-prone areas. The validation results show sufficient agreement between the obtained susceptibility maps and the existing landslide locations.  相似文献   

16.
The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning.  相似文献   

17.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

18.
Landslide susceptibility mapping is among the useful tools applied in disaster management and planning development activities in mountainous areas. The susceptibility maps prepared in this research provide valuable information for landslide hazard management in Lashgarak region of Tehran. This study was conducted to, first, prepare landslide susceptibility maps for Lashgarak region and evaluate landslide effect on mainlines and, second, to analyze the main factors affecting landslide hazard increase in the study area in order to propose efficient strategies for landslide hazard mitigation. A GIS-based multi-criteria decision analysis model (fuzzy logic) is used in the present work for scientific evaluation of landslide susceptible areas in Lashgarak region. To this end, ArcGIS, PCIGeomatica, and IDIRISI software packages were used. Eight information layers were selected for information analysis: ground strength class, slope angle, terrain roughness, normalized difference moisture index, normalized difference vegetation index, distance from fault, distance from the river, and distance from the road. Next, eight different scenarios were created to determine landslide susceptibility of the study area using different operators (intersection (AND), union (OR), algebraic sum (SUM), multiplication (PRODUCT), and different fuzzy gamma values) of fuzzy overlay approach. After that, the performance of various fuzzy operators in landslide susceptibility mapping was empirically compared. The results revealed the excellent consistency of landslide susceptibility map prepared using the fuzzy union (OR) operator with landslide distribution map in the study area. Eventually, the accuracy of landslide susceptibility map prepared using the fuzzy union (OR) operator was evaluated using the frequency ratio diagram. The results showed that frequency values of the landslides gradually increase from “low susceptibility” to high “susceptibility” as 88.34% of the landslides are categorized into two “high” and “very high” susceptibility classes, implying the satisfactory consistency between the landslide susceptibility map prepared using fuzzy union (OR) operator and landslide distribution map.  相似文献   

19.
The 2015 Mw7.8 Gorkha earthquake triggered thousands of landslides of various types scattered over a large area. In the current study, we utilized pre- and post-earthquake high-resolution satellite imagery to compile two landslide inventories before and after earthquake and prepared three landslide susceptibility maps within 404 km2 area using frequency ratio (FR) model. From the study, we could map about 519 landslides including 178 pre-earthquake slides and 341 coseismic slides were identified. This study investigated the relationship between landslide occurrence and landslide causative factors, i.e., slope, aspect, altitude, plan curvature, lithology, land use, distance from streams, distance from road, distance from faults, and peak ground acceleration. The analysis showed that the majority of landslides both pre-earthquake and coseismic occurred at slope >30°, preferably in S, SE, and SW directions and within altitude ranging from 1000 to 1500 m and 1500 to 3500 m. Scatter plots between number of landslides per km?2 (LN) and percentage of landslide area (LA) and causative factors indicate that slope is the most influencing factor followed by lithology and PGA for the landslide formation. Higher landslide susceptibility before earthquake is observed along the road and rivers, whereas landslides after earthquake are triggered at steeper slopes and at higher altitudes. Combined susceptibility map indicates the effect of topography, geology, and land cover in the triggering of landslides in the entire basin. The resultant landslide susceptibility maps are verified through AUC showing success rates of 78, 81, and 77%, respectively. These susceptibility maps are helpful for engineers and planners for future development work in the landslide prone area.  相似文献   

20.
. Regional landslide susceptibility assessments pose complex problems. To solve these problems, numerous approaches, such as statistical analysis, geotechnical engineering approach, geomorphologic approach and fuzzy logic, have been employed. However, all the available methods for regional landslide susceptibility assessments have some uncertainties due to a lack of knowledge and variability. Minimizing these uncertainties provides realistic approaches. Use of the fuzzy logic approach to produce a landslide susceptibility map of a landslide-prone area in NW Turkey is the main purpose of the present study. For this purpose, the study includes five main stages, these being the preparation of a landslide inventory of the study area, the application of factor analysis, the extraction of fuzzy if-then rules, the use of a geographical information system, and the control of the reliability of the resulting landslide susceptibility map. Slope angle, slope aspect, land use, weathering depth, water conditions and topographical elevation were considered as landslide conditioning factors for the study area. A total of 23 if-then rules was extracted from the field data. Employing these rules, fuzzified index maps representing each parameter were obtained. Finally, combining these maps, the landslide susceptibility map of the area was prepared. When compared with the landslide susceptibility map, the landslides identified in the area were found to be located in the very high- and high-susceptibility zones. As far as the performance of the fuzzy approach for processing is concerned, the images appear to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号