首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low-angle dip schistosity zones of the Belomorian mobile belt of northern Karelia are zones of plastic flow of thrust origin. They were formed from 1.85 to 1.90 Ga: 1879 ± 21 Ma according to 40Ar/39Ar for amphibole from amphibolites and 1857 ± 13 Ma according to the Sm–Nd isochron in amphibolites. The PT parameters of rock metamorphism in low-angle dip schistosity zones correspond to the boundary of amphibolite and granulite facies of metamorphism: T = 640–765°C, rarely rising to 826°C; P = 8.0–11.7 kbar. The hypothesis of the two-stage Paleoproterozoic metamorphism of rocks of the Belomorian mobile belt was introduced.  相似文献   

2.
The paper presents original authors’ data on aluminous schists in the Tsogt tectonic plate in the Southern Altai Metamorphic Belt. The nappe includes a medium-temperature/medium-pressure zonal metamorphic complex, whose metamorphic grade varies from the greenschist to epidote-amphibolite facies. The garnet and garnet–staurolite schists contain three garnet generations of different composition and morphology. The P–T metamorphic parameters estimated by mineralogical geothermometers and geobarometers and by numerical modeling with the PERPLEX 668 software provide evidence of two successive metamorphic episodes: high-gradient (of the andalusite–sillimanite type, geothermal gradient approximately 40–50°/km) and low-gradient (kyanite–sillimanite type, geothermal gradient approximately 27°/km). The P-T parameters of the older episode are T = 545–575°C and P = 3.1–3.7 kbar. Metamorphism during the younger episode was zonal, and its peak parameters were T = 560–565°C, P = 6.4–7.2 kbar for the garnet zone and T = 585–615°C, P = 7.1–7.8 kbar for the staurolite zone. The metamorphism evolved according to a clockwise P–T path: the pressure increased during the first episode at a practically constant temperature, and then during the second episode, the temperature increased at a nearly constant pressure. Such trends are typical of metamorphism related to collisional tectonic settings and may be explained by crustal thickening due to overthrusting. The regional crustal thickening reached at least 15–18 km.  相似文献   

3.
The metabasites of Chadegan, including eclogite, garnet amphibolite and amphibolite, are forming a part of Sanandaj–Sirjan Zone. These rocks have formed during the subduction of the Neo–Tethys ocean crust under Iranian plate. This subduction resulted in a subduction metamorphism under high pressuremedium temperature of eclogite and amphibolites facies condition. Then the metamorphic rocks were exhumed during the continental collision between the Afro–Arabian continent and the Iranian microcontinent. In the metabasite rocks, with typical MORB composition, garnet preserved a compositional zoning occurred during metamorphism. The magnesium (XMg) gradually increases from core to rim of garnets, while the manganese (XMn) decreases towards the rim. Chondrite–normalized Rare Earth Element patterns for these garnets exhibit core–to–rim increases in Light Rare Earth Elements. The chondrite–normalized REE patterns of garnets, amphiboles and pyroxenes display positive trend from LREEs to Heavy Rare Earth Elements (especially in garnet), which suggests the role of these minerals as the major controller of HREE distribution. The geochemical features show that the studied eclogite and associated rocks have a MORB origin, and probably formed in a deep–seated subduction channel environment. The geothermometry estimation yields average pressure of ~22 kbar and temperature of 470–520°C for eclogite fomation. The thermobarometry results gave T = 650–700°C and P ≈ 10–11 kbar for amphibolite facies.  相似文献   

4.
The Belomorian Mobile Belt (BMB) in northern Karelia mostly consists of gently sloping shear zones, whose gneisses and migmatized amphibolites and blastomylonites are typically thinly banded, with their banding consistently dipping north- and northeastward. These gently sloping shear zones were not affected by folding after they were produced and are not cut by Paleoproterozoic metabasite dikes. Intrusive metabasites in the gently sloping shear zones make up relatively small (usually <5 m) equant or elongate bodies and occur as fragments of larger bodies. These fragments are often concentrated in stripes. Metabasites in the gently sloping shear zone are sometimes also found as lenses and tabular bodies of relatively small thickness, which are conformable with the foliation of the host rocks. The gently sloping shear zones cut across older domains of more complicated structure, which suggests that these zones are gently sloping ductile shear zones. Along these zones, the nappes were thrust south- and southwestward, and this process was the last in the origin of major structural features of BMB when the Paleoproterozoic Lapland–Kola orogen was formed. Practically identical age values were obtained for the gently sloping shear zone in the two widely separated Engonozero and Chupa segments of BMB: 1879 ± 21 Ma (40Ar/39Ar amphibole age of amphibolite whose protolith was mafic rock) and 1857 ± 13 Ma (Sm–Nd mineral isochron age of garnet amphibolites after gabbronorite). The PT metamorphic parameters in these gently sloping shear zones are remarkably different from the metamorphic parameters outside these zones: the pressure is 3–4 kbar lower and the temperature is 60–100°C lower. Thrusting-related decompression triggered the transition from the older high-pressure episode of Paleoproterozoic metamorphism to a younger syn-thrusting higher temperature metamorphic episode. The peak metamorphic parameters corresponding to the boundary between the amphibolite and granulite facies were reached only in the central portions of the shear zones: T= 680–760°C, P = 8.0–11.9 kbar. In areas of the most intense migmatization, temperature estimates in the central portions of the shear are as high as 810–830°C. The marginal portions of the shear zones were formed at lower temperatures of 610–630°C. The temperature heterogeneous and rock heating in the gently sloping shear zones may have resulted from flows of high-temperature metamorphic fluid that were focused to the central portions of the zones.  相似文献   

5.
The results of thermobarometry yielded the PT parameters of formation and evolution of sapphirine- bearing granulites in the Anabar shield with peak values of UHT metamorphism in the range of T = 920–1000°C at P = 9–11 kbar. Isotope–geochronological data indicate a polymetamorphic evolution of these rocks. Detrital zircon cores in the center of crystals yielded ages of 3.36, 2.75, 2.6, and 2.5 Ga. Later, superimposed metamorphic transformations of the detrital zircon formed rims dated to 2.4, 2.3, 2.2, and 1.83 Ga. A potential provenance source of the detrital zircons could be hypersthene plagiogneisses and metabasics of the Daldyn Group with a premetamorphic age no less than 3.32 Ga and products of their metamorphism of about 2.7 Ga old.  相似文献   

6.
The origin and sources of the Il’mensky-Vishnevogorsky miaskite-carbonatite complex, one of the world’s largest alkaline complexes, with unique rare-metal and colored-stone mineralization and Nb, Zr, and REE deposits, are discussed in this paper. Geochemical and isotopic studies, including of Nd, Sr, C, and O isotopes, as well as estimation of PT formation conditions, of miaskites and carbonatites from various deposits of the Il’mensky-Vishnevogorsky Complex have been carried out. The Vishnevogorsky, Potaninsky, and Buldym Nb-REE deposits and the Il’mensky, Baidashevo, and Uvil’dy occurrences related to carbonatites were investigated. Their geological setting, composition, and ore resource potential are characterized. The genetic models and typical features of the Il’mensky-Vishnevogorsky Complex are considered. The rocks of the Il’mensky-Vishnevogorsky Complex were formed at T = 1000?230°C and P = 2–5 kbar. Carbonated miaskite melt was divided into immiscible silicate and carbonate liquids at T = 1000°C and P = 5 kbar. Miaskite crystallized at T = 850?700°C and P = 3.5–2.5 kbar. The formation temperature of carbonatite I of the Vishnevogorsky pluton was close to the temperature of miaskite crystallization (700–900°C). The crystallization temperature of carbonate-silicate rock and carbonatite I in the Central alkaline tract was 650–600°C. The formation temperature of carbonatite II varied from 590 to 490°C. Dolomite-calcite carbonatite III and dolomite carbonatite IV of the Buldym massif were formed at T = 575?410°C and T = 315?230°C, respectively. The geochemical features of carbonatites belonging to the Il’mensky-Vishnevogorsky Complex differ from those of carbonatites related to alkaline ultramafic rocks and are close to those of carbonatites related to nepheline syenite or carbonatites localized in linear fracture zones. A high Sr content in early carbonatites along with relatively low Ba, Nb, Ta, Ti, Zr, and Hf contents and a certain enrichment in HREE (a low La/Yb ratio) in comparison with carbonatites of the alkaline ultramafic association are typical. The geochemistry of carbonatites of the Il’mensky-Vishnevogorsky Complex corresponds to the trend of geochemical evolution of carbonatitic melts and their fluid derivatives. The Sr, Nd, C, and O isotopic compositions indicate a mantle magmatic source of the Il’mensky-Vishnevogorsky Complex and participation of moderately depleted mantle (DM) and enriched mantle EM1 in magma generation. Carbonatite and miaskite of the Vishnevogorsky pluton are related to the DM magma source, and carbonatite of the Buldym massif, to the EM1 source, probably, involved in the plume ascent.  相似文献   

7.
It is attempted to determineT, P values for the lowgrade metamorphic facies. From geologic-petrographic observations and from experiments mineralreactions are outlined which characterize the zeolitic-, the glaucophane- and the greenschistfacies, respectively. Only such reactions are considered which are univariant if Pf=Ps; thus aP-T grid can be arrived at. Experimental data on the equilibria of the relevant reactions is taken from the literature and from own experiments. Experimental results are always checked against known field-observations. Contrary to current opinium, we arrive at rather higher temperatures for the beginning of the lowgrade metamorphic facies: Diagenesis. From sedimentation up to slightly below 300° C. Zeolitic facies. From slightly below 300° C up to about 400° C. Greenschistfacies. From about 400° C up to about 550° C. Glaucophaneschistfacies. Under pressures of at least 6–7 kb this facies begins somewhat above 300° C, probably at about 330° C, grading into high-pressure greenschistfacies.  相似文献   

8.
The PT conditions of Early Paleozoic metamorphism in the Sangilen block of the Tuvino-Mongolian Massif (southeastern part of the Central Asian Mobile Belt) achieved a value of 910–950°C and 3–4 kbar, which corresponded to the conditions of ultrahigh temperature–low pressure (UHT/LP) metamorphism. During retrograde metamorphism, cooling down to 850°C was accompanied by compression (up to 5.5–7 kbar), and then cooling down to 580–650°C took place at nearly the same pressure (5.5–6.5 kbar). UHT metamorphism was related to the elevated heat flow from the mantle, leading also to an intensive basite magmatism. The “counter-clockwise” PT evolution was evoked by underthrusting of the hot tectonic slab (Erzin complex) beneath the colder one (Moren complex).  相似文献   

9.
Petrologic examination of coronites from the Bergen Arcs Complex in Norway revealed that garnet crowns formed due to clinopyroxene interaction with matrix plagioclase and spinel during the Grenville granulite-facies metamorphism (at T ~ 960°C and P = 1.3 GPa). Along with this, the rocks show evidence of reactions related to superimposed Caledonian eclogite-facies metamorphism. These are microscopic coronas consisting of omphacite, kyanite, corundum, amphibole, and biotite. The rims formed under aqueous conditions with potassium introduction ata T ~ 710–730°C and P ~ 1.3–1.5 GPa. Local occurrence of eclogite metamorphism found at a great distance (>100 m) from shear zones of the eclogite metamorphic stage indicates that the whole eclogite succession and not only its local sites (shear zones) were heated to the eclogite-metamorphism temperature.  相似文献   

10.
Garnet in metapelites from the Wölz Complex of the Austroalpine crystalline basement east of the Tauern Window characteristically consists of two growth phases, which preserve a comprehensive record of the geothermal history during polymetamorphism. From numerical modelling of garnet formation, detailed information on the pressure–temperature–time (P–T–t) evolution during prograde metamorphism is obtained. In that respect, the combined influences of chemical fractionation associated with garnet growth, modification of the original growth zoning through intragranular diffusion and the nucleation history on the chemical zoning of garnet as P and T change during growth are considered. The concentric chemical zoning observed in garnet and the homogenous rock matrix, which is devoid of chemical segregation, render the simulation of garnet growth through successive equilibrium states reliable. Whereas the first growth phase of garnet was formed at isobaric conditions of ~3.8 kbar at low heating/cooling rates, the second growth phase grew along a Barrovian P–T path marked with a thermal peak of ~625°C at ~10 kbar and a maximum in P of ~10.4 kbar at ~610°C. For the heating rate during the growth of the second phase of garnet, average rates faster than 50°C Ma?1 are obtained. From geochronological investigations the first growth phase of garnet from the Wölz Complex pertains to the Permian metamorphic event. The second growth phase grew in the course of Eo-Alpine metamorphism during the Cretaceous.  相似文献   

11.
Experimental studies in the system Fe,Ni–olivine–carbonate–S (P = 6.3 GPa, T = 1050–1550°C, t = 40–60 h) aimed at modeling of the interaction of subducted carbonates and sulfur with rocks of the silicate mantle and at investigation of the likely mechanism of the formation of mantle sulfides were performed. It is shown that an association of olivine + orthopyroxene + magnesite + pyrite coexisting with a sulfur melt/fluid with dissolved Fe, Ni, and O is formed at T ≤ 1250°C. An association of low-Fe olivine, orthopyroxene, and magnesite and two immiscible melts of the carbonate and S–Fe–Ni–O compositions are formed at T ≥ 1350°C. It is shown that the reduced S-bearing fluids may transform silicates and carbonates, extract metals from the solid-phase matrix, and provide conditions for generation of sulfide melts.  相似文献   

12.
This paper reports the results of the first comprehensive petrological study of mafic enclaves widespread in the products of recent (2006–2012) eruptions of Bezymianny Volcano, Kamchatka. Four types of mafic enclaves were distinguished on the basis of the composition and morphology of minerals, P–T conditions of formation of mineral assemblages, and structural and textural characteristics of the rocks. Disequilibrium assemblages of mafic enclaves indicate a complex structure of the magmatic plumbing system of the volcano, including a shallow chamber with andesite–basaltic andesite magmas and a deep reservoir filled in part with plagioclase–hornblende cumulates and fed by basic magmas with mantle harzburgite xenoliths. The mafic enclaves were formed at different levels of the magmatic plumbing system of the volcano and correspond to different degrees of mixing of interacting magmas. The most abundant enclaves were formed during magma ascent from the deep reservoir (960–1040°C, 5–9 kbar) into the shallow andesitic chamber (940–980°C). Enclaves of plagioclase–hornblende cumulates from the basic magmas feeding the deep reservoir (T > 1090°C and P > 9 kbar) are much less common.  相似文献   

13.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

14.
The crystallization of plagioclase-bearing assemblages in mantle rocks is witness of mantle exhumation at shallow depth. Previous experimental works on peridotites have found systematic compositional variations in coexisting minerals at decreasing pressure within the plagioclase stability field. In this experimental study we present new constraints on the stability of plagioclase as a function of different Na2O/CaO bulk ratios, and we present a new geobarometer for mantle rocks. Experiments have been performed in a single-stage piston cylinder at 5–10 kbar, 1050–1150?°C at nominally anhydrous conditions using seeded gels of peridotite compositions (Na2O/CaO?=?0.08–0.13; X Cr = Cr/(Cr?+?Al)?=?0.07–0.10) as starting materials. As expected, the increase of the bulk Na2O/CaO ratio extends the plagioclase stability to higher pressure; in the studied high-Na fertile lherzolite (HNa-FLZ), the plagioclase-spinel transition occurs at 1100?°C between 9 and 10 kbar; in a fertile lherzolite (FLZ) with Na2O/CaO?=?0.08, it occurs between 8 and 9 kbar at 1100?°C. This study provides, together with previous experimental results, a consistent database, covering a wide range of PT conditions (3–9 kbar, 1000–1150?°C) and variable bulk compositions to be used to define and calibrate a geobarometer for plagioclase-bearing mantle rocks. The pressure sensitive equilibrium:
$$\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{4}}}^{{\text{Ol}}}}\limits_{{\text{Forsterite}}} +\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{8}}}^{{\text{Pl}}}}\limits_{{\text{Anorthite}}~} =\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{6}}}^{{\text{Cpx}}}}\limits_{{\text{Ca-Tschermak}}} +{\text{ }}\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{6}}}^{{\text{Opx}}}}\limits_{{\text{Enstatite}}} ,$$
has been empirically calibrated by least squares regression analysis of experimental data combined with Monte Carlo simulation. The result of the fit gives the following equation:
$$P=7.2( \pm 2.9)+0.0078( \pm 0.0021)T{\text{ }}+0.0022( \pm 0.0001)T{\text{ }}\ln K,$$
$${R^2}=0.93,$$
where P is expressed in kbar and T in kelvin. K is the equilibrium constant K?=?a CaTs × a en/a an × a fo, where a CaTs, a en, a an and a fo are the activities of Ca-Tschermak in clinopyroxene, enstatite in orthopyroxene, anorthite in plagioclase and forsterite in olivine. The proposed geobarometer for plagioclase peridotites, coupled to detailed microstructural and mineral chemistry investigations, represents a valuable tool to track the exhumation of the lithospheric mantle at extensional environments.
  相似文献   

15.
This study provides the first evidence for the occurrence of ultrahigh-temperature (UHT) granulite-facies metamorphism in the Yenisei Ridge (Angara–Kan block). UHT metamorphism is documented in Fe-Al-rich metapelites on the basis of the garnet–hypersthene–sillimanite–cordierite–plagioclase–biotite–spinel–quartz–K-feldspar assemblage. Microtextural relationships and compositional data for paragneisses of the Kan complex attest to three distinct metamorphic episodes: (M1) pre-peak prograde (820?900°C/5.5–7 kbar), (M2) peak UHT (920–1000°C/7–9 kbar), and (M3) post-peak retrograde (770?900°C/5.5–7.5 kbar). The observed counterclockwise P–T evolution at a high geothermal gradient (dT/dP = 100–200°C/kbar) suggests that UHT metamorphic assemblages were formed in an overall extensional tectonic setting accompanied by underplating of mantle-derived mafic magmas, which may be sourced from ~1750 Ma giant radiating dike swarms linked to the Vilyuy mantle plume as part of the Trans-Siberian LIP. The broad synchroneity of UHT metamorphism (1744 ± 26 Ma; monazite–zircon isochron age) and rift-related endogenic activity in the region can provide an additional line of evidence for the two-stage evolution of granulite-facies metamorphism in the Angara–Kan block. The Aldan–Stanovoy, Anabar, and Baikal basement inliers of high-grade metamorphic rocks within the Siberian craton record two Paleoproterozoic peaks (1.9 and 1.75 Ga) of granulite-facies metamorphism. The synchronous sequence of tectonothermal events at the periphery of the large Precambrian Laurentian, Baltica, and Siberian cratons provide convincing evidence for their spatial proximity over a wide time interval, which is consistent with the most recent paleomagnetic reconstructions of the Proterozoic supercontinent Nuna.  相似文献   

16.
ABSTRACT The northern Dabie terrane consists of a variety of metamorphic rocks with minor mafic-ultramafic blocks, and abundant Jurassic-Cretaceous granitic plutons. The metamorphic rocks include orthogneisses, amphibolite, migmatitic gneiss with minor granulite and metasediments; no eclogite or other high-pressure metamorphic rocks have been found. Granulites of various compositions occur either as lenses, blocks or layers within clinopyroxene-bearing amphibolite or gneiss. The palaeosomes of most migmatitic gneisses contain clinopyroxene; melanosomes and leucosomes are intimately intermingled, tightly folded and may have formed in situ. The granulites formed at about 800–830 °C and 10–14 kbar and display near-isothermal decompression P–T paths that may have resulted from crust thickened by collision. Plagioclase-amphibole coronae around garnets and matrix PI + Hbl assemblages from mafic and ultramafic granulites formed at about 750–800 °C. Partial replacement of clinopyroxene by amphibole in gneiss marks amphibolite facies retrograde metamorphism. Amphibolite facies orthogneisses and interlayered amphibolites formed at 680–750 °C and c. 6 kbar. Formation of oligoclase + orthoclase antiperthite after plagioclase took place in migmatitic gneisses at T ≤ 490°C in response to a final stage of retrograde recrystallization. These P–T estimates indicate that the northern Dabie metamorphic granulite-amphibolite facies terrane formed in a metamorphic field gradient of 20–35 °C km-1 at intermediate to low pressures, and may represent the Sino-Korean hangingwall during Triassic subduction for formation of the ultrahigh- and high-P units to the south. Post-collisional intrusion of a mafic-ultramafic cumulate complex occurred due to breakoff of the subducting slab.  相似文献   

17.
The paper presents data on the mineral assemblages and chemical composition of minerals in rocks from the eastern part of the Pana Massif, Kola Peninsula, and the results obtained by studying the amphibolization of rocks of this massif genetically related to metamorphism. The rocks contain four amphibole populations, which can be used as good indicators for metamorphic facies. The amphiboles show broad compositional variability. Their evaluated P-T crystallization conditions indicate that the prograde stage of the overprinted metamorphic processes occurred at temperatures increasing from 382 to 473°C and pressures from 1.7 to 4.3 kbar. The retrograde stage (biotitization, chloritization, silification, and carbonatization) took place at temperatures of about 370°C and pressures of approximately 1 kbar. The fluid regime of the metamorphic transforms was also controlled by the temperature: the fluids were oxidizing early in the course of the process and gradually became more reducing with decreasing temperature.  相似文献   

18.
The highly calcic anorthosite (An>95) from the Sittampundi Layered Complex (SLC) develops corundum, spinel and sapphirine that are hitherto not reported from any anorthositic rocks in the world. Petrological observations indicate the following sequence of mineral growth: plagioclasematrix → corundum; clinopyroxene → amphibole; corundum + amphibole → plagioclasecorona + spinel; and spinel + corundum → coronitic sapphirine. Phase relations in the CaO–Na2O–Al2O3–SiO2–H2O (CNASH) system suggest that corundum was presumably developed through vapour present incongruent melting of the highly calcic plagioclase during ultra-high temperature (UHT) metamorphism (T ≥ 1000 °C, P ≥ 9 kbar). Topological constraints in parts of the Na2O–CaO–MgO–Al2O3–SiO2–H2O (NCMASH) system suggest that subsequent to the UHT metamorphism, aqueous fluid(s) permeated the rock and the assemblage corundum + amphibole + anorthite + clinozoisite was stabilized during high-pressure (HP) metamorphism (11 ± 2 kbar, 750 ± 50 °C). Constraints of the NCMASH topology and thermodynamic and textural modeling study suggest that coronitic plagioclase and spinel formed at the expense of corundum + amphibole during a steeply decompressive retrograde PT path (7–8 kbar and 700–800 °C) in an open system. Textural modeling studies combined with chemical potential diagrams (μSiO2–μMgO) in the MASH system support the view that sapphirine also formed from due to silica and Mg metasomatism of the precursor spinel ± corundum, on the steeply decompressive retrograde PT path, prior to onset of significant cooling of the SLC. Extremely channelized fluid flow and large positive solid volume change of the stoichiometrically balanced sapphirine forming reaction explains the localized growth of sapphirine.  相似文献   

19.
Plagioclase-bearing garnet-omphacite (Grt-Omp) eclogites and garnet-augite eclogite-like (Grt-Aug) schists from the amphibolite and gneiss beds of the Belomorian Mobile Belt have been studied. They are spread over a large area. In most of the studied objects, these rocks have preserved primary concordant relations with the host amphibolite and gneiss strata; they are not disturbed by late tectonic processes and are not genetically related to tectonic-melange zones. Their protoliths were amphibolite lenses in gneisses or large mafic zones composed of amphibolites. The Grt-Omp eclogites formed in the low-pressure field of the eclogite facies (P = 12.5-13.0 kbar, T = 600-630 °C), and the eclogite-like Grt-Aug rocks, at the boundary between the amphibolite and eclogite facies (P = 9.6-11.1 kbar, T = 630-700 °C), under the intense impact of metamorphic fluid on the amphibolites. The compositional evolution of the rock-forming minerals during the formation of Grt-Omp eclogites and eclogite-like Grt-Aug rocks followed the same scheme. The petrographic diversity of apoamphibolite rocks (Grt-Omp eclogites and Grt-Aug schists) might be due to the difference both in the bulk composition of the metabasic protolith and in the ratios of CaO and Na2O activities in the metamorphic fluid. The relatively low content of CaO leads to the formation of Grt-Omp paragenesis in eclogites. Higher CaO contents give rise to eclogite-like Grt-Aug rocks containing jadeite-poor clinopyroxene.  相似文献   

20.
Experimental studies in the Fe3C–SiO2–MgO system (P = 6.3 GPa, T = 1100–1500°C, t = 20–40 h) have been carried out. It has been established that carbide-oxide interaction resulted in the formation of Fe-orthopyroxene, graphite, wustite, and cohenite (1100 and 1200°C), as well as a Fe–C–O melt (1300–1500°C). The main processes occurring in the system at 1100 and 1200°C are the oxidation of cohenite, the extraction of carbon from carbide, and the crystallization of metastable graphite, as well as the formation of ferrosilicates. At T ≥ 1300°C, graphite crystallization and diamond growth occur as a result of the redox interaction of a predominantly metallic melt (Fe–C–O) with oxides and silicates. The carbide–oxide interaction studied can be considered as the basis for modeling a number of carbon-producing processes in the lithospheric mantle at fO2 values near the iron–wustite buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号