首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The numerical prediction of the Earth’s polar motion is of both theoretical and practical interest. The present paper is aimed at a comprehensive, experimental study of the predictability of polar motion using a homogeneous BIH (Bureau International de l’Heure) data set for the period 1967–1983. Based on our knowledge of the physics of the annual and the Chandler wobbles, we build the numerical model for the polar motion by allowing the wobble period to vary. Using an optimum base length of six years for prediction, this “floating-period” model, equipped with a nonlinear least-squares estimator, is found to yield polar motion predictions accurate to within 0″.012 to 0″.024 depending on the prediction length up to one year, corresponding to a predictability of 89–82%. This represents a considerable improvement over the conventional fixed-period predictor, which, by its nature, does not respond to variations in the apparent wobble periods (in particular, a dramatic decrease in the periods of both the annual and the Chandler wobbles after the year 1980). The superiority of the floating-period predictor to other predictors based on critically different numerical models is also demonstrated.  相似文献   

2.
This paper presents normal time–frequency transform (NTFT) application in harmonic/quasi-harmonic signal prediction. Particularly, we use the normal wavelet transform (a special NTFT) to make long-term polar motion prediction. Instantaneous frequency, phase and amplitude of Chandler wobble, prograde and retrograde annual wobbles of Earth’s polar motion are analyzed via the NTFT. Results show that the three main wobbles can be treated as quasi-harmonic processes. Current instantaneous harmonic information of the three wobbles can be acquired by the NTFT that has a kernel function constructed with a normal half-window function. Based on this information, we make the polar motion predictions with lead times of 1 year and 5 years. Results show that our prediction skills are very good with long lead time. An abnormality in the predictions occurs during the second half of 2005 and first half of 2006. Finally, we provide the future (starting from 2013) polar motion predictions with 1- and 5-year leads. These predictions will be used to verify the effectiveness of the method proposed in this paper.  相似文献   

3.
Long-term continuous gravity observations, recorded at five superconducting gravimeter (SG) stations in the Global Geodynamic Project (GGP) network, as well as data on orientation variations in the Earths rotation axis (i.e. polar motion), have been used to investigate the characteristics of gravity variations on the Earths surface caused by polar motion. All the SG gravity data sets were pre-processed using identical techniques to remove the luni-solar gravity tides, the long-term trends of the instrumental drift, and the effects of atmospheric pressure. The analysis indicates that the spectral peaks, related to the Chandler and annual wobbles, were identified in both the power and product spectral density estimates. The magnitude of gravity variations, as well as the gravimetric amplitude factor associated with the Chandler wobble, changed significantly at different SG stations and during different observation periods. However, when all the SG observations at these five sites were combined, the gravimetric parameters of the Chandler wobble were retrieved accurately: 1.1613 ± 0.0737 for the amplitude factor and –1°.30 ± 1°.33 for the phase difference. The value of the estimated amplitude factor is in agreement with that predicted theoretically for the zonal tides of an elastic Earth model.  相似文献   

4.
The polar motion excited by the fluctuation of global atmospheric angular momentum (AAM) is investigated. Based on the global AAM data, numerical results demonstrate that the fluctuation of AAM can excite the seasonal wobbles (e.g., the 18-month wobble) and the Chandler wobble, which agree well with previous studies. In addition, by filtering the dominant low frequency components, some distinct polar wobbles corresponding to some great diurnal and semi-diurnal atmospheric tides are found.  相似文献   

5.
The polar motion excited by the fluctuation of global atmospheric angular momentum (AAM) is investigated. Based on the global AAM data, numerical results demonstrate that the fluctuation of AAM can excite the seasonal wobbles (e.g., the 18-month wobble) and the Chandler wobble, which agree well with previous studies. In addition, by filtering the dominant low frequency components, some distinct polar wobbles corresponding to some great diurnal and semi-diurnal atmospheric tides are found.  相似文献   

6.
Based on an analysis of polar motion behavior, we found the possibility of predicting polar motion up to one year in advance. Comparing these predicted polar coordinates with the observed ones (smoothed), the rms of the differences is about 0".02. The differences of the relative polar motion are much smaller. For any time interval of 20–30 days throughout the whole year, the rms of the relative polar motion differences is about 0".01. It appears that 80–90% of the polar motion is composed of the stable, predictable Chandler and annual terms.  相似文献   

7.
 Two long time series were analysed: the C01 series of the International Earth Rotation Service and the pole series obtained by re-analysis of the classical astronomical observations using the HIPPARCOS reference frame. The linear drift of the pole was determined to be 3.31 ± 0.05 milliarcseconds/year towards 76.1 ± 0.80° west longitude. For the least-squares fit the a priori correlations between simultaneous pole coordinates x p , y p were taken into account, and the weighting function was calculated by estimating empirical variance components. The decadal variations of the pole path were investigated by Fourier and wavelet analysis. Using sliding windows, the periods and amplitudes of the Chandler wobble and annual wobble were determined. Typical periods in the variable Chandler wobble and annual wobble parameters were obtained from wavelet analyses. Received: 21 January 2000 / Accepted: 28 August 2000  相似文献   

8.
 Autocovariance prediction has been applied to attempt to improve polar motion and UT1-UTC predictions. The predicted polar motion is the sum of the least-squares extrapolation model based on the Chandler circle, annual and semiannual ellipses, and a bias fit to the past 3 years of observations and the autocovariance prediction of these extrapolation residuals computed after subtraction of this model from pole coordinate data. This prediction method has been applied also to the UT1-UTC data, from which all known predictable effects were removed, but the prediction error has not been reduced with respect to the error of the current prediction model. However, the results show the possibility of decreasing polar motion prediction errors by about 50 for different prediction lengths from 50 to 200 days with respect to the errors of the current prediction model. Because of irregular variations in polar motion and UT1-UTC, the accuracy of the autocovariance prediction does depend on the epoch of the prediction. To explain irregular variations in x, y pole coordinate data, time-variable spectra of the equatorial components of the effective atmospheric angular momentum, determined by the National Center for Environmental Prediction, were computed. These time-variable spectra maxima for oscillations with periods of 100–140 days, which occurred in 1985, 1988, and 1990 could be responsible for excitation of the irregular short-period variations in pole coordinate data. Additionally, time-variable coherence between geodetic and atmospheric excitation function was computed, and the coherence maxima coincide also with the greatest irregular variations in polar motion extrapolation residuals. Received: 22 October 1996 / Accepted: 16 September 1997  相似文献   

9.
New Solution for the Earth’s Free Wobble and Its Geophysical Implications   总被引:4,自引:4,他引:0  
In this paper, the theory of the free wobble of the triaxial Earth is developed and new conclusions are drawn: the Euler period should be actually expressed by the first kind of complete elliptic integral; the trace of the free polar motion is elliptic and the orientations of its semi-minor and major axes are approximately parallel to the Earth’s principal axes A and B, respectively. In addition, the present theory shows that there is a mechanism of frequency-amplitude modulation in the Chandler wobble, whi...  相似文献   

10.
 The long-term variation of polar motion contains a number of periods similar to climate cycles. Two possible causes for these long-term variations are mass redistributions produced by variations of atmospheric and oceanic circulation, and mass exchanges between the cryosphere and hydrosphere. Inner-core wobble, which can be inferred from the observed motion of the geomagnetic pole, is another phenomenon with periods similar to climate cycles. Only observations relating to mass redistributions caused by atmosphere dynamics and inner-core wobble are available for sufficiently long periods of time to investigate their influence on climate cycles in polar motion. Both processes contribute to climate cycles in polar motion, but they cannot completely explain these cycles. Possible sources of climate cycles are discussed. Received: 20 December 1999 / Accepted: 28 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号