首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The precipitation events (n = 91), collected for 3 years (2000–2002) during the period of SW-monsoon (Jun–Aug) from an urban site (Ahmedabad, 23.0°N, 72.6°E) of a semi-arid region in western India, are found to exhibit characteristic differences in terms of their solute contents. The low solute (<700 μeq L−1) events are either marked by heavy precipitation amount or successive events collected during an extended rain spell; whereas light precipitation events occurring after antecedent dry period are characterized by high solutes (>700 μeq L−1). The ionic composition of low solute events show large variability due to varying contribution of anthropogenic species (: 1%–74%; : 1%–25%; and : 8%–68%) to the respective ion balance. In high solute events, ionic abundances are dominated by mineral dust (Ca2+ and ) and sea-salts (Na+ and Cl). These differences are also reflected in the pH of low solute events (range: 5.2–7.4, VWM: 6.4) and high solute events (range: 6.6–8.2, VWM: 7.3). The comparison of Ca2+/Na+ and nss- ratios (on equivalent basis) in rain and aerosols suggests that the ionic composition of high solute events is influenced by below-cloud scavenging; whereas evidence for in-cloud scavenging is significantly reflected in low solute events. The annual wet-deposition fluxes of and are 330 and 480 mg m−2 y−1, respectively, in contrast to their corresponding dry-deposition fluxes (14 and 160 mg m−2 y−1); whereas wet and dry removal of Ca2+, Mg2+ and are comparable.  相似文献   

2.
Climate Dynamics - North Africa experienced a severe heatwave in April 2010 with daily maximum temperatures ( $$T_{max}$$ ) frequently exceeding $$40\,^{\circ }\mathrm{C}$$ and daily minimum...  相似文献   

3.
Cloud shadows lead to alternating light and dark periods at the surface, with the most abrupt changes occurring in the presence of low-level forced cumulus clouds. We examine multiyear irradiance time series observed at a research tower in a midlatitude mixed deciduous forest (Harvard Forest, Massachusetts, USA: \(42.53{^{\circ }}\hbox {N}\)\(72.17{^{\circ }}\hbox {W}\)) and one made at a similar tower in a tropical rain forest (Tapajós National Forest, Pará, Brazil: \(2.86{^{\circ }}\hbox {S}\)\(54.96{^{\circ }}\hbox {W}\)). We link the durations of these periods statistically to conventional meteorological reports of sky type and cloud height at the two forests and present a method to synthesize the surface irradiance time series from sky-type information. Four classes of events describing distinct sequential irradiance changes at the transition from cloud shadow and direct sunlight are identified: sharp-to-sharp, slow-to-slow, sharp-to-slow, and slow-to-sharp. Lognormal and the Weibull statistical distributions distinguish among cloudy-sky types. Observers’ qualitative reports of ‘scattered’ and ‘broken’ clouds are quantitatively distinguished by a threshold value of the ratio of mean clear to cloudy period durations. Generated synthetic time series based on these statistics adequately simulate the temporal “radiative forcing” linked to sky type. Our results offer a quantitative way to connect the conventional meteorological sky type to the time series of irradiance experienced at the surface.  相似文献   

4.
Weather and climate networks traditionally follow rigorous siting guidelines, with individual stations located away from frost hollows, trees or urban areas. However, the diverse nature of the UK landscape suggests that the feasibility of siting stations that are truly representative of regional climate and free from distorting local effects is increasingly difficult. Whilst the urban heat island is a well-studied phenomenon and usually accounted for, the effect of warm urban air advected downwind is rarely considered, particularly at rural stations adjacent to urban areas. Until recently, urban heat advection (UHA) was viewed as an urban boundary-layer process through the formation of an urban plume that rises above the surface as it is advected. However, these dynamic UHA effects are shown to also have an impact on surface observations. Results show a significant difference in temperatures anomalies (\(p\,< \,0.001\)) between observations taken downwind of urban and rural areas. For example, urban heat advection from small urbanized areas (\(\sim \)1\(\,\hbox {km}^{2}\)) under low cloud cover and wind speeds of 2–3\(\,\hbox {m}\,\hbox {s}^{-1}\) is found to increase mean nocturnal air temperatures by 0.6\(\,^{\circ }\hbox {C}\) at a horizontal distance of 0.5 km. Fundamentally, these UHA results highlight the importance of careful interpretation of long-term temperature data taken near small urban areas.  相似文献   

5.
While the land-surface temperature (LST) observed at meteorological stations has significantly increased over the previous few decades, it is still unclear to what extent urbanization has affected these positive trends. Based on the LST data recorded at an urban station in Shijiazhuang in North China, and two rural meteorological stations, the effect of urbanization at the Shijiazhuang station for the period 1965–2012 is examined. We find, (1) a statistically-significant linear trend in annual mean urban–rural LST difference of \(0.27\,^{\circ }\hbox {C}\) \(\hbox {(10 year)}^{-1}\), with an urbanization contribution of 100% indicating that the increase in the annual mean LST at the urban station is entirely caused by urbanization. The urbanization effects in spring, summer and autumn on the trends of mean LST are also significant; (2) the urbanization effect is small for time series of the annual mean minimum LST, and statistically marginal for the trend in annual mean maximum LST [\(0.19\,^{\circ }\hbox {C}\,\hbox {(10 year)}^{-1}\)]; (3) the urbanization effect on the annual mean diurnal LST range (\(\Delta {LST}\)) at the urban station is a strongly significant trend of \(0.23\,^{\circ }\hbox {C (10\,year)}^{-1}\), with an urbanization contribution of 21%. The urbanization effects on trends in the spring and autumn mean \(\Delta {LST}\) are also larger and more significant than for the other seasons; (4) the urbanization effects on the long-term LST trends are remarkably different from those on the near-surface air temperature at the same urban station. Nonetheless, the significant warming of the urban boundary layer is expected to affect the urban environment and ecosystems. However, the problem of data representativeness at an urban station for the monitoring and investigation of large-scale climate change remains.  相似文献   

6.
The goal of this study is to determine the chemical composition of rain, in the wider region of Athens, Greece for the time period 1st September 2001 to 31st August 2002. Two model automatic rain samplers were installed in the Meteorological Station of Laboratory of Climatology (latitude: 37° 58′ N, longitude: 23° 47′ E) inside the Athens University Campus and in a site at Heraklio Attica, a northern suburb of Athens (latitude: 38° 03′ N, longitude: 23° 45′ E). The concentrations (μeq l−1) of the major cations (H+, Na+, K+, Ca2+ and Mg2+) and anions (Cl, , και ), as well as pH and conductivity of rain in 39 total samples were determined. The figures of pH range from 6.4 to 8.4 and conductivity from 8 to 207 μS cm−1. The analysis showed that Ca2+ ions are abundant within all examined samples, while and present the highest concentrations from the anions. In order to find out the origin of the air masses, the air mass back trajectories were calculated. Five sectors of the origin of air masses were revealed: the North, the South, the Local, the West and the East sector. Multivariate methods included Factor Analysis and Discriminant Analysis were applied to the examined ion concentrations and three main factors were extracted, which discriminated the ions according to their origin. The first group of ions is interpreted as the result of the anthropogenic activity, the second group represents the acidity–alkalinity independently of their source and the third one the marine influence.  相似文献   

7.
The present study investigated the chemical composition of wet atmospheric precipitation in India’s richest coal mining belt. Total 418 samples were collected on event basis at six sites from July to October in 2003 and May to October in 2004 and analysed for pH, EC, F, Cl, , , Ca2+, Mg2+, Na+, K+ and . The average pH value (5.7) of the rainwater of the investigated area is alkaline in nature. However, the temporal pH variation showed the alkaline nature during the early phase of monsoonal rainfall but it trends towards acidic during the late and high rainfall periods. The rainwater chemistry of the region showed high contribution of Ca2+ (47%) and (21%) in cations and (55%) and Cl (23%) in anionic abundance. The high non seas salt fraction (nss) of Ca2+ (99%) and Mg2+ (96%) suggests crustal source of the ions, while the high nss (96%) and high ratio signifying the impact of anthropogenic sources and the source of the acidity. The ratio of varies from 0.03 to 3.23 with the average value of 0.84 suggesting that Ca2+ and play a major role in neutralization processes. The assessment of the wet ionic deposition rates shows no any specific trend, however Ca2+ deposition rate was highest followed by and .  相似文献   

8.
To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 \(\hbox {m}\,\hbox {s}^{-1}\), with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50–60 \(\hbox {m}\,\hbox {s}^{-1}\)) and EF3 (61–75 \(\hbox {m}\,\hbox {s}^{-1})\) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and ? 6 and 47% for the valley, respectively.  相似文献   

9.
Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of \(2.3 \pm 0.3 \,^{\circ }\hbox {C}\), coinciding with a \(180^{\circ }\) shift in wind direction and a decrease in air temperature of \(2.1 \pm 0.2 \,^{\circ }\hbox {C}\). Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar’s ability to detect the lake breeze. The LBF’s ground speed and inland penetration distance were found to be well-correlated (\(r = 0.78\)), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion \(({>} 1\hbox { m s}^{-1})\) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times \({>} 2.5\hbox { m s}^{-1}\)) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.  相似文献   

10.
Mountaintop trace-gas mixing ratios are often assumed to represent free atmospheric values, but are affected by valley planetary boundary-layer (PBL) air at certain times. We hypothesize that the afternoon valley–PBL height relative to the ridgetop is important in the diurnal cycle of mountaintop trace-gas mixing ratios. To investigate this, we use, (1) 4-years (1 January 2009–31 December 2012) of CO and \(\hbox {CO}_{2}\) mixing-ratio measurements and supporting meteorological observations from Pinnacles (\(38.61^{\circ }\hbox {N}\), \(78.35^{\circ }\hbox {W}\), 1017 m a.s.l.), which is a monitoring site in the Appalachian Mountains, (2) regional \(\hbox {O}_{3}\) mixing-ratio measurements, and (3) PBL heights determined from a nearby sounding station. Results reveal that the amplitudes of the diurnal cycles of CO and \(\hbox {CO}_{2}\) mixing ratios vary as a function of the daytime maximum valley–PBL height relative to the ridgetop. The mean diurnal cycle for the subset of days when the afternoon valley–PBL height is at least 400 m below the ridgetop shows a daytime CO mixing-ratio increase, implying the transport of PBL air from the valley to the mountaintop. During the daytime, on days when the PBL heights exceed the mountaintop, PBL dilution and entrainment cause CO mixing ratios to decrease. This decrease in CO mixing ratio, especially on days when PBL heights are at least 400 m above the ridgetop, suggests that measurements from these days can be used as with afternoon measurements from flat terrain in applications requiring regionally-representative measurements.  相似文献   

11.
In November and December 2008, ground-based mobile lidar (GBML) measurements were carried out on Reunion Island (Indian Ocean, $21^{\circ }07^{\prime }\hbox {S}, 55^{\circ }32^{\prime }\hbox {E}$ , 700 km east of Madagascar) with an ultraviolet (355 nm) aerosol-backscatter lidar. Complex substructures were identified within the planetary boundary layer (PBL). A 500-m-resolution non-hydrostatic model was used to simulate the dynamics of the lower troposphere for two observation periods characteristic of the two main weather regimes in this season: the “trade-wind” regime and the “breeze” regime. The model captured the observed structures with a high degree of realism compared to the GBML. A complete diurnal cycle of the PBL along the south coast of the island during a “trade-wind” day was observed and simulated. The PBL depth was found to be anti-correlated with the wind speed. The model showed that the PBL along the coast behaved as a shallow-water flow in hydraulic theory. As the flow accelerated in response to lateral constriction, conversion of potential into kinetic energy forced the PBL top downwards. This favoured rapid transport of concentrated surface emissions within the contracted surface layer, with a possible impact on air quality. GBML observations were also conducted during the early morning of a “breeze” day on the western slope of the Maïdo mountain (2,200 m), at the top of which a new atmospheric observatory has been in operation since 2012. Both model and GBML revealed two superposed layers. The upper layer, higher than approximately 1,600 m above mean sea level, corresponded to free tropospheric air driven by the trade winds. Below, westerly counterflow advection of humid marine air occurred as a result of wake vortices in the lee of the island. The model suggests that free-tropospheric conditions prevail at the observatory from the second half of the night to mid-morning.  相似文献   

12.
The two-year (1999–2000) rainwater chemistry at two monitoring sites in nearby coastal areas [Taiwan (TW) and Hong Kong (HK)] within the Western Pacific region has been studied. The volume weighted average pH values for the entire sampling period in TW and HK were 4.6 and 4.2, respectively. Sea salt Na+ and Cl were the most abundant species in the TW samples but and H+ were the most abundant in the HK samples. The sea salt and concentrations at TW were higher than those at HK both in the cold and warm seasons. Chloride depletion was minimal in the rainwater samples at both sites. Non seasalt- was associated with . Under the influence of the East Asian Winter Monsoon, the back-trajectory studies revealed that elevated anthropogenic species concentrations were associated with trajectories (1) very near to the continental boundary layer of Mainland China; or (2) along the coastline of Eastern China where large cities/industrial areas are located or (3) passing through the region of stagnant air over Northern/Eastern China. The lowest anthropogenic and crustal species concentrations measured in HK are associated with the summer monsoon and are attributed not only to the clean marine air masses but also to the relatively low SO2, NO x and NH3 emissions from the South/ South East Asian countries, as well as infrequent biomass burning activities and wet scavenging at sources during the summer months. Approaching tropical cyclones led to the lowest pH values (4.2 in TW and 3.8 in HK) amongst the other weather categories. The findings here have been compared with other studies within East Asia and elsewhere.  相似文献   

13.
We present surface-layer measurements of temperature fluctuation variance from a site characterized by small-scale inhomogeneities. Periods of marked radiative forcing are selected. The data characterized by diabatic conditions and vertical heat flux larger than some threshold (here, chosen to be 0.01 K ms−1) agree quite well with the convective scaling in unstable cases, and with the z-less parameterisation (with a large scatter) in stable cases. For near-neutral cases, the similarity function diverges because of the loss of significance of the temperature scale. Departures from similarity are highlighted in cases with smaller thermal fluxes, because horizontal heterogeneity and unsteadiness become important as production terms.  相似文献   

14.
The aqueous phase acid-catalyzed reaction of methanol (CH3OH) with nitric acid (HNO3) to yield methyl nitrate (CH3ONO2) under atmospheric conditions has been investigated using gas-phase infrared spectroscopy. Reactions were conducted in aqueous sulfuric acid solutions (50.5–63.6 wt.%) with [CH3OH] = 0.00005–0.005 M and [HNO3] = 0.02–0.21 M, at 278.2–328.6 K. Methyl nitrate production rates increased linearly with CH3OH and HNO3 concentrations and exponentially with sulfuric acid weight percent within the regime studied. Rates increased linearly with nitronium ion concentration, indicating that the reaction involves as the nitrating agent under these conditions. At 298 K, the rate of methyl nitrate production can be calculated from k obs [CH3OH][HNO3], where k obs  = 2.337 × 10−13(exp(0.3198*wt.% H2SO4)) when the solubility of CH3ONO2 in acidic solution is approximated by H* for pure water. The temperature dependence of the rate coefficient is related to solution composition, with activation energies of 59 and 49 kJ/mol at 51.1 and 63.6 wt.% H2SO4, respectively, when k is calculated from rate. The temperature dependence has also been parameterized for application to the atmosphere, but the small quantities of present in aerosol particles will result in methyl nitrate production rates too small to be of significance under most atmospheric conditions. An erratum to this article can be found at  相似文献   

15.
The reactions of three structurally similar unsaturated alcohols, 2-buten-1-ol (crotyl alcohol), 2-methyl-2-propen-1-ol (MPO221) and 3-methyl-2-buten-1-ol (MBO321) with Cl atoms, have been investigated for the first time, using a 400 l Teflon reaction chamber coupled with gas chromatograph-coupled with flame-ionization detection (GC-FID). The experiments were performed at atmospheric pressure and at temperatures between 255 and 298 K, in air or nitrogen as the bath gas. The obtained kinetic data were used to derive the Arrhenius expressions , , (in units of cm3 molecule−1 s−1). Finally, atmospheric lifetimes of those unsaturated alcohols with respect to OH, NO3, O3 and Cl have been calculated.  相似文献   

16.
The reaction kinetics of S(IV) autoxidation catalyzed by Mn(II) in the pH range 3–5 typical for atmospheric liquid water, was investigated. For reactions with pH maintained constant during the reaction course, the predictions obtained by a simple integral approach cover kinetic results only for concentrations of HSO 3 up to 0.2 mM at pH 4.5. Thus, a generalized simple kinetic model, which can be used for predicting the reaction kinetics in wider concentration, pH and temperature ranges, was derived. This model is based on the assumption that the reaction rate is proportional to the concentration of a transient manganese-sulfito complex formed in the initial step of a radical chain mechanism. In the proposed power law rate equation
the concentration of complex is calculated from the stability constant K and concentrations of reactants at a specific reaction time. This rate equation adequately predicts the reaction kinetics in the pH range 3–5, in the concentration ranges 0.1 ≤ [HSO 3 ] ≤ 0.4 mM and 2 ≤ [Mn(II)] ≤ 14.6 μM. For the temperature range 15–35 °C, the estimated value for activation energy is 92.0 ± 0.1 kJ mol−1 and the Gibbs free energy of formation of the manganese-sulfito complex is −20.4 ± 0.3 kJ mol−1. Furthermore, the kinetics for catalytic reactions with pH maintained constant during the reaction course as well as with initial pH adjusted only at the start of the reaction, is described satisfactorily by the present model.  相似文献   

17.
Levels of fine Particulate Matter (PMfine), SO2 and NOx are interlinked through atmospheric reactions to a large extent. NOx, NH3, SO2, temperature and humidity are the important atmospheric constituents/conditions governing formation of fine particulate sulfates and nitrates. To understand the formation of inorganic secondary particles (nitrates and sulfates) in the atmosphere, a study was undertaken in Kanpur, India. Specifically, the study was designed to measure the atmospheric levels of covering winter and summer seasons and day and night samplings to capture the diurnal variations. Results showed are found to be significantly high in winter season compared to the summer season. In winter, the molar ratio of to was found to be greater than 2:1. This higher molar ratio suggests that in addition to (NH4)2SO4, NH4NO3 will be formed because of excess quantity of present. In summer, the molar ratio was less than 2:1 indicating deficit of to produce NH4NO3. The nitrogen conversion ratio (NO2 to NO3) was found to be nearly 50% in the study area that suggested quick conversion of NO2 into nitric acid. As an overall conclusion, this study finds that NH3 plays a vital role in the formation of fine inorganic secondary particles particularly so in winter months and there is a need to identify and assess sources of ammonia emissions in India.  相似文献   

18.
To investigate the atmospheric deposition of nutrients into the coastal and shelf regions of the northwest Pacific Ocean, observation sites were established upon Qianliyan Island (within the Yellow Sea) and the Shengsi Archipelago (within the East China Sea), respectively. Nutrient concentrations, including , were determined in both aerosols and rainwater samples. The analytical results contain clear seasonal signatures, with high values during the dry season and low values during the rainy season. Similar trends are observed for deposition fluxes. The amount of wet deposition is greater than that of dry deposition for the studied nutrient species. The influence of meteorological factors such as rainfall means that samples from Qianliyan Island record higher nutrient values than those from Shengsi. Along with riverine inputs, atmospheric deposition plays an important role in determining the biogeochemistry of nutrient species in coastal and shelf oceans. An erratum to this article can be found at  相似文献   

19.
Ambient suspended particles (TSP) were collected from January to June 2001 at seven sampling sites in western Macedonia, Greece, where four thermal power stations are located. TSP samples were chemically characterized for minerals (Fe, Al, Mg, Ca, K, Ti and Si), trace elements (P, Cd, Cr, Cu, Mn, Pb, V, Zn, Te, Co, Ni, Se, Sr, As, and Sb), water-soluble ions , carbonaceous compounds (OC/EC) and polycyclic aromatic hydrocarbons (PAHs). These classes of compounds were consequently compared with PM mass concentrations of TSP in order to perform mass closure. PM chemical compositions exhibited differences at the seven sites. Minerals were found to be more abundant at four sites, electrolytes dominated the composition at two of the sites while carbonaceous material was most abundant only at one site. The fraction unaccounted for ranged between 22 and 34%. Spatial variations of atmospheric concentrations showed significantly higher levels of minerals, some trace metals and TC at the site that was closest to the power plants. At the same site ions exhibited high correlations with minerals and the majority of trace elements.  相似文献   

20.
In 2005 the Study of Stable Boundary Layer Environment at Dome C (STABLEDC) experimental campaign was conducted at the plateau station of Concordia at Dome C, Antarctica. Temperature profiles measured with a microwave radiometer were used to study the characteristics of surface-based temperature inversions over the course of a year. Statistics of temperature profiles for every month are discussed; the difference between daytime and nocturnal cases observed during the summer months disappears during winter. Surface-based temperature inversions occurred in 70 % of the time during summer, and almost all of the time during winter. During winter the occurrence of warming events leads to a decrease in the temperature difference between the top and the base of the inversion (i.e. the inversion strength). The inversion strength maxima ranged between $3\,^{\circ }\mathrm{C}$ (December) and $35\,^{\circ }\mathrm{C}$ (August) corresponding to gradients of 0.1 and $0.3\,^{\circ }\mathrm{C}\, \mathrm{m}^{-1}$ , respectively. The average surface-based inversion height presents a daily cycle during the summer months with values up to 200 m in the morning hours, while it affects a layer always deeper than 100 m during the winter months. The relationships between inversion strength and the downward longwave radiative flux, absolute temperature, and wind speed are examined. The inversion strength decreases as the longwave radiation increases. A clear anti-correlation between inversion strength and near-surface temperature is evident throughout the year. During the winter, the largest inversion strength values were observed under low wind-speed conditions; in contrast, a clear dependence was not found during the summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号