首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The stationary response of multi-degree-of-freedom non-classically damped linear systems subjected to stationary input excitation is studied. A modal decomposition procedure based on the complex eigenvectors and eigenvalues of the system is used to derive general expressions for the spectral moments of response. These expressions are in terms of cross-modal spectral moments and explicitly account for the correlation between modal responses; thus, they are applicable to structures characterized with significant non-classical damping as well as structures with closely spaced frequencies. Closed form solutions are presented for the important case of response to white-noise input. Various quantities of response of general engineering interest can be obtained in terms of these spectral moments. These include mean zero-crossing rate and mean, variance and distribution of peak response over a specified duration. Examples point out several instances where non-classical damping effects become significant and illustrate the marked improvement of the results of this study over conventional analysis based on classical damping approximations.  相似文献   

2.
It has been shown that the use of base isolation not only attenuates the response of a primary structural system but also reduces the response of a secondary system mounted on or within the main structure. The isolation system, superstructure and equipment may be made of different materials with significantly different energy dissipation characteristics such that the damping matrix for the combined system is non-classical and can only be approximately expressed by modal damping ratios if the classical mode method is used for analysis. The object of this paper is to evaluate the accuracy of this procedure in approximating the responses of base-isolated structures and internal equipment. The complex mode method can provide exact solutions to problems with non-classical damping and is used here to find the exact response of the isolation-superstructure-equipment system. The entire system is assumed to be linear elastic with viscous damping and the superstructure is assumed to be proportionally damped so that the deformation of the superstructure can be expressed in terms of its classical modes. Recognizing that the ratio of the equipment mass to the structural mass and the ratio of the stiffness of the isolation system to the superstructural stiffness are both small, perturbation methods are used to find the response. This study shows that the response of base-isolated structures can be determined by the classical mode method to some degree of accuracy, but the higher frequency content is distorted. The equipment response derived by the classical mode method is much smaller than the exact solution so that the complex mode method should be applied to find equipment response.  相似文献   

3.
A simple modal damping identification model developed by the present authors for classically damped linear building frames is extended here to the non-classically damped case. The modal damping values are obtained with the aid of the frequency domain modulus of the roof-to-basement transfer function and the resonant frequencies of the structure (peaks of the transfer function) as well as the modal participation factors and mode shapes of the undamped structure. The assumption is made that the modulus of the transfer function of the non-classically damped structure matches the one of the classically damped structure in a discrete manner, i.e., at the resonant frequencies of that function modulus. This proposed approximate identification method is applied to a number of plane building frames with and without pronounced non-classical damping under different with respect to their frequency content earthquakes and its limitations and range of applicability are assessed with respect to the accuracy of both the identified damping ratios and that of the seismic structural response obtained by classical mode superposition and use of those identified modal damping ratios.  相似文献   

4.
Damping of structures resting on flexible foundations is affected by soil-structure interaction in two ways: (1) the structure gains damping through energy dissipation in soil, and (2) the damping the structure would have on a rigid foundation is reduced. These effects are evaluated using two approaches: an energy consideration which is a simple but approximate approach, and the complex eigenvalue analysis which is mathematically accurate but uses damped, non-classical vibration modes. These two methods are compared and the accuracy of the more convenient energy approach is assessed. Examples of modal damping are given for rigid structures, buildings and towers.  相似文献   

5.
The evaluation of the dynamic response of non-classically damped linear structures requires the solution of an eigenproblem with complex eigenvalues and modal shapes. Since in practice only a small number of complex modes are needed, the complex eigenvalue problem is solved in the modal subspace in which the generalized damping matrix is not uncoupled by classical real modes. It follows that the evaluation of the structural response requires in both cases the determination of complex modes by numerical techniques, which are not as robust as techniques currently used for the solution of the real eigenvalue problem, and the use of complex algebra. In the present paper an unconditionally stable step-by-step procedure is presented for the response of non-classically damped structures in the modal subspace without using complex quantities. The method is based on the evaluation of the fundamental operator in approximated form of the numerical procedure. In addition, the method can be easily modified to incorporate the modal superposition pseudo-static correction terms.  相似文献   

6.
A method to determine the approximate normal modes and the modal damping for torsionally coupled buildings on an elastic foundation is presented. The modal damping is determined by an iterative procedure which matches the approximate normal mode solution with the rigorous solution. The response quantity to be matched is selected in a consistent and logical manner. The normal modes and the damping ratios thus found are then used to determine the seismic response of the interaction system by the response spectrum technique.  相似文献   

7.
钢结构与混凝土结构阻尼比不同,混凝土房屋与其顶上钢塔组成了非比例阻尼结构系统。本文用非经典振型分解法求解该类结构系统的线弹性地震响应,发现只用前几阶振型响应迭加的结果即可逼近直接积分法的精确度。  相似文献   

8.
In an effort to study the dynamic characteristics of an arch dam system from the vibration test results, a systematic method of frequency-domain system identification is developed. The governing equations for system identification are based on a non-classical modal superposition method. The non-classical model is shown to be derivable from a general matrix formulation of the dam system. The conventional classical modal formulation becomes a special case of the general non-classical formulation. The modal parameters of the non-classical and the classical formulation are to be identified. The system identification method includes a single-mode sweep procedure for initial parameter estimation and a progressive multiple-mode parameter identification scheme that contains an information criterion for the determination of the optimal number of modes to be included in the identification process. The method is applicable to data measured at more than one point on the dam and to data that include both the amplitude response and the phase response. The method is applied to the vibration test data of two dams. Based on the results of these applications, the adequacy of the classical model and the non-classical model is compared and the effect of the phase data on the parameter determination is discussed.  相似文献   

9.
In conventional modal analysis procedures, usually only a few dominant modes are required to describe the dynamic behavior of multi-degrees-of-freedom buildings. The number of modes needed in the dynamic analysis depends on the higher-mode contribution to the structural response, which is called the higher-mode effect. The modal analysis approach, however, may not be directly applied to the dynamic analysis of viscoelastically damped buildings. This is because the dynamic properties of the viscoelastic dampers depend on their vibration frequency. Therefore, the structural stiffness and damping contributed from those dampers would be different for each mode. In this study, the higher-mode effect is referred to as the response difference induced by the frequency-dependent property of viscoelastic dampers at higher modes. Modal analysis procedures for buildings with viscoelastic dampers distributed proportionally and non-proportionally to the stiffness of the buildings are developed to consider the higher-mode effect. Numerical studies on shear-type viscoelastically damped building models are conducted to examine the accuracy of the proposed procedures and to investigate the significance of the higher-mode effect on their seismic response. Two damper models are used to estimate the peak damper forces in the proposed procedures. Study results reveal that the higher-mode effect is significant for long-period viscoelastically damped buildings. The higher-mode effect on base shear is less significant than on story acceleration response. Maximum difference of the seismic response usually occurs at the top story. Also, the higher-mode effect may not be reduced by decreasing the damping ratio provided by the viscoelastic dampers. For practical application, it is realized that the linear viscous damping model without considering the higher-mode effect may predict larger damper forces and hence, is on the conservative side. Supported by: Science Council, Chinese Taipei, grant no. 88-2625-2-002-006  相似文献   

10.
A new response-spectrum mode superposition method, entirely in real value form, is developed to analyze the maximum structural response under earthquake ground motion for generally damped linear systems with repeated eigenvalues and defective eigenvectors. This algorithm has clear physical concepts and is similar to the complex complete quadratic combination (CCQC) method previously established. Since it can consider the effect of repeated eigenvalues, it is called the CCQC-R method, in which the correlation coefficients of high-order modal responses are enclosed in addition to the correlation coefficients in the normal CCQC method. As a result, the formulas for calculating the correlation coefficients of high-order modal responses are deduced in this study, including displacement, velocity and velocity-displacement correlation coefficients. Furthermore, the relationship between high-order displacement and velocity covariance is derived to make the CCQC-R algorithm only relevant to the high-order displacement response spectrum. Finally, a practical step-by-step integration procedure for calculating high-order displacement response spectrum is obtained by changing the earthquake ground motion input, which is evaluated by comparing it to the theory solution under the sine-wave input. The method derived here is suitable for generally linear systems with classical or non-classical damping.  相似文献   

11.
基于复振型分解的多自由度非线性体系动力可靠性研究   总被引:1,自引:0,他引:1  
提出了基于复模态理论的多自由度非线性体系动力可靠性分析方法。该方法首先采用等效线性化的方法处理体系的非线性问题,然后采用复模态分析处理非经典的等效线性阻尼矩阵,将具有非经典阻尼的等效多自由度线性体系按复振型分解,将多自由度体系的随机反应分解为一系列一阶体系的复模态反应,从而求得体系的随机反应,最后进行体系的动力可靠度计算。通过算例验证,表明该方法概念明确、思路清晰,为一般多自由度非线性体系提供了一个普遍适用的动力可靠性分析方法。  相似文献   

12.
Non-proportional damping may be defined as a form of linear viscous damping which introduces coupling between the undamped modal co-ordinate equations of motion. The standard mode superposition method of earthquake response analysis therefore cannot be employed with non-proportionally damped structures. In this paper, several methods for analysing the dynamic response of non-proportional damped structures are outlined. It is concluded that the most efficient procedure is to express the response in terms of a truncated set of undamped modal coordinates and to integrate directly the resulting coupled equations. The effectiveness of the method is demonstrated by a numerical example.  相似文献   

13.
The response-spectrum mode superposition method is widely used for seismic response analyses of linear systems. In using this method, the complete quadratic combination (CQC) is adopted for classically damped linear systems and the complex complete quadratic combination (CCQC) formula is adopted for non-classically damped linear systems. However, in both cases, the calculation of seismic response analyses is very time consuming. In this paper, the variation of the modal correlation coefficients of displacement, velocity and displacement-velocity with frequency and damping ratios of two modes of interest are studied, Moreover, the calculation errors generated by using CQC and square-root-of-the-sum-of-thesquares (SRSS) methods (or CCQC and CSRSS methods) for different damping combinations are compared. In these analyses, some boundary lines for classically and non-classically damped systems are plotted to distinguish the allowed minimum frequency ratio at given geometric mean of the damping ratios of both modes if their relativity is neglected. Furthermore, the simplified method, which is a special mode quadratic combination method considering only relativity of adjacent modes in CQC method and named simplified CQC or partial quadratic combination (PQC) method for classically damped linear system, is proposed to improve computational efficiency, and the criterion for determination of how many correlated modes should be adopted is proposed. Similarly, the simplified CCQC or complex partial quadratic combination (CPQC) method for the non-classically damped linear system and the corresponding criterion are also deduced. Finally, a numerical example is given to illustrate the applicability, computational accuracy and efficiency of the PQC and CPQC methods.  相似文献   

14.
This paper investigates the stability of MDOF optimal direct output feedback control systems through analysis of system modal properties after the application of time-delayed control force. Explicit formula and numerical solution are obtained to determine the maximum delay time and critical delay time which cause system instability and control ineffectiveness, respectively. The results indicate that direct velocity feedback has longer maximum and critical delay times than state feedback. The feedback of non-collocated measurements will reduce maximum delay time. The ratios of maximum and critical delay times to structural natural period decrease as the active damping increases. For a given damped structure, a critical control weighting factor exists. When a larger control weighting factor is used, the control system will remain stable even with longer delay time. A formula is also developed to determine the critical control weighting factor so as to make the stability of MDOF control systems dominated by lower modes. Hence, the maximum delay time and critical delay time can be significantly lengthened by selecting an appropriate control weighting factor and/or adding higher modal dampings.  相似文献   

15.
For structures with non-proportional damping, complex eigenvectors or mode shapes must be used in order to decoe the equations of motion. The resulting equations can then be solved in a systematic way. The necessity of solvie complex eigenvalue problem of a large system remains an obstacle for the practical application of the method. This stres utilizes the fact that in practice only a small number of the complex modes are needed. Therefore, these complex modes be approximated by a linear combination of a small number of the undamped modes, which can be obtained by established methods with less cost. An additional eigenvalue problem is then solved in a subspace with a much sm dimension to provide the best combination coefficient for each complex mode. The method of solution for the decoue equations is then carried over, using the approximate complex modes expressed in undamped mode shapes, to resue simple formulas for the time- and frequency-domain solution. Thus, an efficient modal superposition method is develoe for non-proportionally damped systems. The accuracy of this approximate method is studied through an example. Comparing the frequency response result using the approximate method with that using the exact complex modes, found that the error is negligible.  相似文献   

16.
基于复模态的有限元模型修正算法   总被引:2,自引:0,他引:2  
针对地下结构地震响应分析中无限地基辐射阻尼问题,引入复模态情况下的具有非简化的堆积阻尼矩阵的阻尼模型,并针对具有集中质量阵的阻尼模型提出了合并与质量有关的阻尼和堆积阻尼的思想,并据此提出了一种修正此类有限元模型的两步法,首先从复模态参数中提取实模态参数,采用基于模态残余力的识别算法修正刚度矩阵,然后根据复模态参数和已得的刚度矩阵来识别阻尼模型中的刚度参与系数和质量阻尼堆积阻尼联合矩阵。  相似文献   

17.
A method is presented for generating floor response spectra for aseismic design of equipment attached to primary structures. The method accurately accounts for tuning, interaction and non-classical damping, which are inherent characteristics of composite oscillator-structure systems. Modal synthesis and perturbation techniques are used to derive the modal properties of the composite system in terms of the known properties of the structure and the oscillator. Floor spectra are generated directly in terms of these derived properties and the input ground response spectrum using modal combination rules that account for modal correlations and non-classical damping. The computed spectra, in general, are considerably lower than conventional floor response spectra due to the effect of interaction. They provide more realistic and economical criteria for design of equipment. The method is accurate to the order of perturbation and is computationally efficient, as it avoids time-history analysis and does not require numerical eigenvalue evaluation of the composite oscillator-structure system. The results of a parametric study demonstrate the accuracy of the method and illustrate several key features of floor response spectra.  相似文献   

18.
The principal co-ordinates of non-proportionally damped systems are coupled by non-zero off-diagonal elements in the transformed damping matrix. The effects of this damping coupling are investigated, and it is found that significant errors may occur if the dynamic analysis of such systems is based on a truncated set of the overall system modes, even when the damping coupling between these modes is included in the solution. This effect is illustrated by computed results for an idealized soil-structure system.  相似文献   

19.
The Rayleigh damping model, which is pervasive in nonlinear response history analysis (RHA) of buildings, is shown to develop ‘spurious’ damping forces and lead to inaccurate response results. We prove that a viscous damping matrix constructed by superposition of modal damping matrices—irrespective of the number of modes included or values assigned to modal damping ratios—completely eliminates the ‘spurious’ damping forces. This is the damping model recommended for nonlinear RHA. Replacing the stiffness‐proportional part of Rayleigh damping by the tangent stiffness matrix is shown to improve response results. However, this model is not recommended because it lacks a physical basis and has conceptual implications that are troubling: hysteresis in damping force–velocity relationship and negative damping at large displacements. Furthermore, the model conflicts with the constant‐damping model that has been the basis for fundamental concepts and accumulated experience about the inelastic response of structures. With a distributed plasticity model, the structural response is not sensitive to the damping model; even the Rayleigh damping model leads to acceptable results. This perspective on damping provides yet another reason to employ the superior distributed plasticity models in nonlinear RHA. OpenSees software has been extended to include a damping matrix defined as the superposition of modal damping matrices. Although this model leads to a full populated damping matrix, the additional computational demands are demonstrated to be minimal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号