首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The present study investigates the persistence of summer sea surface temperature anomalies(SSTAs) in the midlatitude North Pacific and its interdecadal variability. Summer SSTAs can persist for a long time(approximately 8–14 months)around the Kuroshio Extension(KE) region. This long persistence may be strongly related to atmospheric forcing because the mixed layer is too shallow in the summer to be influenced by the anomalies at depths in the ocean. Changes in atmospheric circulation, latent heat flux, and longwave radiation flux all contribute to the long persistence of summer SSTAs. Among these factors, the longwave radiation flux has a dominant influence. The effects of sensible heat flux and shortwave radiation flux anomalies are not significant. The persistence of summer SSTAs displays pronounced interdecadal variability around the KE region, and the variability is very weak during 1950–82 but becomes stronger during 1983–2016. The changes in atmospheric circulation, latent heat flux, and longwave radiation flux are also responsible for this interdecadal variability because their forcings on the summer SSTAs are sustained for much longer after 1982.  相似文献   

2.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

3.
The interdecadal change in the relationship between the El Niño–Southern Oscillation (ENSO) and atmospheric circulation over the North Pacific is investigated using both observational data and an atmospheric general circulation model. There are two prominent modes of winter mid-latitude atmospheric variability in the North Pacific: the West Pacific (WP) teleconnection and the Aleutian Low (AL). The relationship between ENSO and the WP-AL patterns changed notably around the late 1970s. From 1957 to 1975, during the mature phase of ENSO, significant sea surface temperature anomalies (SSTAs) occurred, mainly in the equatorial eastern Pacific Ocean; the associated atmospheric circulation anomaly pattern resembles the negative phase of a WP teleconnection pattern. In contrast, for the 1978–2011 period, significant negative SSTAs were observed in the western and extratropical Pacific in both hemispheres, with some significant positive SSTAs appearing over the eastern Pacific. This is in agreement with the defined regions of a mega-ENSO, the associated atmospheric circulation anomaly pattern resembles the AL mode. Further analysis suggests that a negative–positive anomaly pattern in the 500?hPa geopotential height throughout the entire North Pacific, possibly enhanced by the SSTAs in the extratropical North Pacific associated with the mature phase of ENSO, is responsible for modulating the relationship between ENSO and the North Pacific atmospheric circulation.  相似文献   

4.
It is known that the wintertime North Pacific Oscillation (NPO) is an important extratropical forcing for the occurrence of an El Ni?o?Southern Oscillation (ENSO) event in the subsequent winter via the “seasonal footprinting mechanism” (SFM). This study reveals that the Atlantic Multidecadal Oscillation (AMO) can notably modulate the relationship between the winter NPO and the following winter ENSO. During the negative AMO phase, the winter NPO has significant impacts on the following winter ENSO via the SFM. In contrast, the influence of the winter NPO on ENSO is not robust at all during the positive AMO phase. Winter NPO-generated westerly wind anomalies over the equatorial western Pacific during the following spring are much stronger during negative than positive AMO phases. It is suggested that the AMO impacts the winter NPO-induced equatorial westerly winds over the western Pacific via modulating the precipitation climatology over the tropical central Pacific and via modulating the connection of the winter NPO with spring sea surface temperature in the tropical North Atlantic.  相似文献   

5.
In this study, we investigate the variations of spring and autumn air temperatures in southern China (SC) and associated atmospheric circulation patterns. During the boreal spring, the SC air temperature is mainly influenced by tropical sea surface temperature anomalies (SSTAs). On the one hand, the El Ni?o SSTA pattern may induce a stronger-than-normal western Pacific subtropical high, which leads to warming in SC. On the other hand, the warm SSTAs in the tropical Indian Ocean may trigger anomalous Rossby wave trains, which propagate northeastward and result in anomalously high temperature in SC. During the boreal autumn, however, the SC temperature is more likely affected by mid-latitude atmospheric circulation, such as the wave trains forced by the North Atlantic SSTAs. The NCEP Climate Forecast System version 2 (CFSv2) is able to capture the climatology of SC air temperatures during both spring and autumn. For interannual variation, the CFSv2 shows a good skill for predicting the SC temperature in spring, due to the model’s good performance in capturing the associated atmospheric circulation anomalies as responses to tropical SSTAs, in spite of the overestimated relationship with the El Ni?o–Southern Oscillation (ENSO). However, the model has a poor skill for predicting the SC temperature in autumn, primarily due to the unrealistic prediction of its relationship with the ENSO.  相似文献   

6.
韵律与长期天气预报   总被引:4,自引:1,他引:4  
本文讨论了对长期天气预报比较重要的韵律问题,共有三部分内容:(1)分析广大台站在相关普查中发现的隔季相关现象,相关间隔自2个月到11个月不等,其中大约半年左右的比较常见,并且地理分布区域性强,大洋上最明显,指出这是韵律现象。 (2)月平均环流与海温的相似性分析表明,北半球环流与海温都存在着隔季相似性。例如,春或夏海温距平相似时,大约6个月之后又相似。而秋冬春三季大气环流的相似容易造成夏季大气环流的相似。指出这是大气环流与海洋的韵律活动的表现。 (3)讨论了两种可能的韵律形成过程,一种是北太平洋西风漂流区夏季海温通过韵律关系影响半年后的冬季海温,从而影响大气环流和天气。另一种是冬季低纬东太平洋海温与大气环流相互作用,通过韵律关系影响半年之后夏季低纬太平洋的环流,从而影响西太平洋副高及我国天气。  相似文献   

7.
Favorable connections between seasonal footprinting mechanism and El Niño   总被引:1,自引:1,他引:0  
Previous studies suggested that the wintertime SST in the North Pacific that are generated by the concurrent North Pacific Oscillation (NPO) are able to force El Niño during subsequent winter via the so-called ‘seasonal footprinting mechanism’ (SFM). We examine how the NPO effectively generates the El Niño via the SFM in the observations and models. The occurrence ratio for El Niño under conditions of NPO forcing during the previous winters is about 41 % for the period of 61 years (1949–2009), indicating that the atmospheric forcing from the mid-latitudes through the SFM does not always trigger an El Niño. We observed certain favorable conditions under which the SFM may effectively induce El Niño. We directly compared these observations with two cases: when the wintertime NPO leads to El Niño during the following winter through the SFM, and when the wintertime NPO is not followed by El Niño. Our analysis demonstrates that the spatial structures of the NPO, associated wind speed and net heat flux in the northeast Pacific, differ between the two cases. Such differences determine the existence of a footprint SST in the northeastern Pacific during the late spring and summer, which plays a key role in initiating the El Niño via the projection of westerly wind stress anomalies onto the equatorial Pacific during the same seasons. By conducting linear baroclinic model experiments, it is found that the positions of La Niña SST forcing during the previous winter are able to modify the spatial structures of the NPO, which produces favorable conditions for the El Niño during subsequent winter via the SFM.  相似文献   

8.
龙振夏  李崇银 《大气科学》2001,25(2):145-159
利用LASG九层大气环流谱模式及IAP两层大气环流模式,模拟研究了不同持续时间的赤道东太平洋海表温度正异常(海表温度异常的持续时间分别为1月份,1~2月份,1~4月份及1~8月份,其他月份为气候SST)对西太平洋副高的影响。结果表明,尽管海表温度异常的持续时间不同,但其引起的西太平洋副高的异常演变及其分布却十分相似;同时,季风区的异常降水(进而异常潜热释放)随时间的演变及其分布也存在一定的相似性(对应于不同持续时间的赤道东太平洋的海表温度正异常,5月份印度洋至西太平洋地区都表现出赤道辐合带北移偏晚的特征);季风区降水的这种变化同西太平副高的异常是一致的,从而揭示出这两种现象有可能存在着某种联系。结果还表明,导致这种大气响应场对赤道东太平洋海表温度异常持续时间不敏感的一个重要原因是大气内部过程的影响:中纬大气的内部Rossby波源维持了热带地区激发的扰动在中高纬的存在,同时大气内部Rossby波源对赤道太平洋地区的海表温度异常持续时间表现出不敏感性,正是由于这种不敏感性才导致了响应场对赤道太平洋地区海表温度异常持续时间的不敏感性。模拟结果还表明,在夏季赤道东太平洋存在海表温度正异常的情况,尽管大气内部动力过程的作用十分重要,但夏季赤道东太平洋海表温度正异常对夏季西太平洋副高的影响却明显存在,因此,基于赤道太平洋地区海表温度异常的夏季西太平洋副高的可预报性受到赤道东太平洋海表温度正异常及大气内部动力过程的双重影响。模式的依赖性研究表明,模拟结果具有一定的普遍性。  相似文献   

9.
徐霈强  冯娟  陈文 《大气科学》2016,40(4):831-840
东亚冬季风(East Asian Winter Monsoon,简称EAWM)和东亚夏季风(East Asian Summer Monsoon,简称EASM)作为东亚季风系统的两个组成部分,他们之间存在显著的转换关系。前人的研究表明EAWM与次年EASM的转换关系只有在ENSO事件发生时才显著,然而这些研究都是基于ENSO对大气环流的影响是对称的这一假设下进行的。本文的研究表明EAWM和次年EASM的转换关系在ENSO冷暖事件中存在着明显的不对称性。通过将EAWM分为与ENSO有关的部分(EAWMEN)和与ENSO无关的部分(EAWMRES),我们发现在强EAWMEN年(即La Ni?a年),在西北太平洋会存在一个从冬季维持到次年夏季的气旋性环流异常(the anomalous western North Pacific Cyclone,WNPC),从而造成EASM偏弱;而在弱EAWMEN年(即El Ni?o年时),在西北太平洋会存在一个从冬季维持到次年夏季的反气旋性环流异常(the anomalous western North Pacific anticyclone,WNPAC),从而引起次年EASM偏强。比较而言,WNPAC的位置比WNPC的位置偏南,且强度更强,因而在El Ni?o年能够引起次年EASM更大幅度的增强。造成这一不对称联系的主要原因是热带太平洋和印度洋异常海温的演变差异。在强EAWMEN年,热带太平洋的负海温异常衰减地较慢,使得在次年夏季仍然维持着显著的负异常海温;相反,在弱EAWMEN年,热带太平洋的正海温异常衰减地较快,以至于在次年夏季的异常海温信号已经基本消失,但此时印度洋却有着显著的暖海温异常。海温演变的差异进一步造成了大气环流的差异,从而导致EAWM与次年EASM联系的不对称性。  相似文献   

10.
In this study, the El Nino-Southern Oscillation (ENSO) phase-locking to the boreal winter in CMIP3 and CMIP5 models is examined. It is found that the models that are poor at simulating the winter ENSO peak tend to simulate colder seasonal-mean sea-surface temperature (SST) during the boreal summer and associated shallower thermocline depth over the eastern Pacific. These models tend to amplify zonal advection and thermocline depth feedback during boreal summer. In addition, the colder eastern Pacific SST in the model can reduce the summertime mean local convective activity, which tends to weaken the atmospheric response to the ENSO SST forcing. It is also revealed that these models have more serious climatological biases over the tropical Pacific, implying that a realistic simulation of the climatological fields may help to simulate winter ENSO peak better. The models that are poor at simulating ENSO peak in winter also show excessive anomalous SST warming over the western Pacific during boreal winter of the El Nino events, which leads to strong local convective anomalies. This prevents the southward shift of El Nino-related westerly during boreal winter season. Therefore, equatorial westerly is prevailed over the western Pacific to further development of ENSO-related SST during boreal winter. This bias in the SST anomaly is partly due to the climatological dry biases over the central Pacific, which confines ENSO-related precipitation and westerly responses over the western Pacific.  相似文献   

11.
Using the 1980-2010 winter GODAS oceanic assimilations, study is conducted of the winter heat content (HC) established in the subsurface layer (5 to 366 m in depth) over the western Pacific warm pool (WP), followed by investigating the HC spatiotemporal characteristics, persistence and the impacts on the climate anomalies of neighboring regions. Results are as follows: 1) the pattern of integral consistency is uncovered by the leading EOF1 (PC1) mode of HC interannual variability, the year-to-year fluctuation of the time coefficients being well indicative of the interannual anomaly of the WP winter subsurface-layer thermal regime. The HC variation is bound up with ENSO, keeping pronounced autocorrelation during the following two seasons and more, with the persistence being more stable in comparison to SSTA in the equatorial middle eastern Pacific; 2) the winter HC anomalies produce lasting effect on the WP thermal state in the following spring and summer and corresponding changes in the warm water volume lead to the meridional transport and vertical exchange of warm water, which exerts greater impacts upon the sea surface temperature/heat flux over the warm pool per se and neighboring regions, especially in the Philippine Sea during the posterior spring and summer; 3) the increase in the winter HC corresponds to the spring OLR decrease and richer precipitation over the waters east to the Philippine Sea and the resultant convective heating anomalies are responsible for the rise of geopotential isobaric surfaces over tropical and subtropical western North Pacific, thereby producing effect on the western Pacific subtropical high (anomaly). Subsequently, the sea-surface heat flux exchange is intensified in the warm pool, a robust anomalous cyclone shows up at lower levels, air-sea interactions are enhanced and abnormal convective heating occurs, together making the winter HC anomalies even more closely associated with the variation in the summer subtropical high. As a result, the WP winter HC can be used as an effective predictor of the variation in spring/summer western Pacific subtropical high and the strength of summer monsoon over the northwestern Pacific.  相似文献   

12.
The inverse relationship between the warm phase of the El Ni?o Southern Oscillation(ENSO) and the Indian Summer Monsoon Rainfall(ISMR) is well established. Yet, some El Ni?o events that occur in the early months of the year(boreal spring) transform into a neutral phase before the start of summer, whereas others begin in the boreal summer and persist in a positive phase throughout the summer monsoon season. This study investigates the distinct influences of an exhausted spring El Ni?o(springtime)...  相似文献   

13.
In this modelling study, the teleconnections of ENSO are studied using an atmospheric general circulation model (AGCM), HadAM3. The influence of sea surface temperature anomalies (SSTAs) remote from the tropical Pacific but teleconnected with ENSO is investigated. Composite cycles of El Niño and La Niña SSTs are created and imposed on HadAM3. These SSTs are imposed in different areas, with climatological SSTs elsewhere, in order to find the influences of SSTs in different regions. It is found that most of the reproducible response to ENSO is forced directly from the tropical Pacific before the peak of the event. However, during the peak and decay of ENSO, remote SSTs become increasingly influential throughout the tropics (at the 98% significance level). This could lead to extended ENSO-related predictability due to the memory of the remote oceans. The Indian Ocean and Maritime Continent SSTs are found to be particularly influential. Indian Ocean SSTAs dampen the teleconnections from the tropical Pacific and force the atmosphere above the tropical Atlantic. More generally, when a tropical SSTA is imposed, atmospheric anomalies are forced locally with anomalies of the opposite sign to the west. Some of the reproducible response to ENSO in the tropical Atlantic is forced, not directly from the tropical Pacific but from the Indian ocean, which in turn is forced by the tropical Pacific. Subsequently, delayed SSTAs in the tropical Atlantic damp the local response and force the atmosphere above the tropical Pacific in the opposite manner.  相似文献   

14.
《大气与海洋》2013,51(2):122-131
Abstract

We assessed the impacts of some key Pacific ocean‐atmosphere circulation patterns on annual cycles of temperature and precipitation across British Columbia, Yukon, and southeast Alaska. The El Niño‐Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and ENSO conditional on PDO states were considered in composite analyses of 71 long, high‐quality datasets from surface meteorological stations. Month‐by‐month, station‐by‐station Monte Carlo bootstrap tests were employed to assess statistical significance. The results trace precipitation and temperature responses as a function of location, season, and climate mode. In summary, temperature responses were relatively uniform, with higher (lower) temperatures during the warm (cool) phases of these circulation patterns. Nevertheless, strength and seasonal persistence varied considerably with location and climate mode. Impacts were generally most consistent in winter and spring but could extend through most of the year. Overall spatiotemporal patterns in precipitation response were decoupled from those in temperature and were far more heterogeneous. Complexities in precipitation signals included north‐south inverse teleconnectivity along the Pacific coast, with a zero‐response hinge point in the approximate vicinity of northern Vancouver Island; seasonally opposite anomalies in several interior regions, which might conceivably reflect contrasting effects of Pacific climate modes on wintertime frontal storms versus summertime convective storms; and a consistent lack of substantial response in northwestern British Columbia and possibly southwestern Yukon, conjectured to reflect complications associated with the Icefield Ranges. The product is intended primarily as a basic‐level set of climate response maps for hydrologists, biologists, foresters, and others who require empirical assessments of relatively local‐scale, year‐round ENSO and PDO effects across this broad region.  相似文献   

15.
Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.  相似文献   

16.
基于1901-2000年多种海-气资料,分析了厄尔尼诺成熟年冬季-初夏西北太平洋异常反气旋(WNPAC)的年际变化特征及其对东亚气候的影响。结果表明,无论是厄尔尼诺事件成熟期的冬季还是次年的春季和初夏,WNPAC的年际变化主要存在两个空间变化型,即反映其强度变化的经验正交函数分解第1模态和反映其位置变化的第2模态。厄尔尼诺成熟年冬季WNPAC强度不仅与赤道中东太平洋海温异常有关,而且与太平洋西部(WP)型遥相关的强度有关,而其位置的变化则主要与西北太平洋局地海温异常以及北极涛动(AO)有关;次年春季,WNPAC的强度除了与赤道中东太平洋海温异常和太平洋西部型遥相关存在显著相关外,还与赤道大西洋海温异常有关,而其位置的变化则主要与西北太平洋局地海温异常和太平洋西部型遥相关有关;次年初夏,WNPAC强度主要与西北印度洋和西南印度洋的海温异常以及东亚-太平洋(EAP)型遥相关的强度有关。进一步分析表明,成熟年冬季-初夏WNPAC的强度和位置的变化均可对东亚地区降水异常分布产生影响,这对预测厄尔尼诺事件发生后冬季及后期春、夏季节东亚地区降水异常分布具有一定的指示意义。此外,次年初夏,WNPAC强度变化与西北太平洋台风发生频数存在显著负相关,即WNPAC越强,台风发生的频数越少,反之亦然。  相似文献   

17.
郑玉琼  陈文  陈尚锋 《大气科学》2020,44(2):435-454
根据观测资料的研究指出春季北极涛动(Arctic Oscillation, AO)对随后冬季厄尔尼诺-南方涛动(El Nino–Southern Oscillation, ENSO)的影响具有明显不对称性。春季AO处于正位相时,它对随后冬季厄尔尼诺(El Nino)事件的影响显著,然而春季AO负位相对随后冬季拉尼娜(La Nina)的影响不明显。本研究分析了30个来自CMIP5的耦合模式对春季AO与随后冬季ENSO不对称性关系的模拟能力。30个CMIP5耦合模式中,只有CNRM-CM5和GISS-E2-H-CC模式能较好地抓住春季AO与冬季ENSO的联系。进一步分析这两个模式中春季AO与冬季ENSO的不对称性关系,发现CNRM-CM5模式能较好地再现春季AO与冬季ENSO的非对称关系,即春季AO正(负)位相会导致赤道中东太平洋出现El Nino(La Nina)型海表温度增暖(冷却)。然而,GISS-E2-H-CC模式的模拟结果显示,春季AO对随后冬季ENSO的影响是对称的。本文随后解释了CNRM-CM5(GISS-E2-H-CC)模式能(不能)模拟出春季AO与冬季ENSO不对称关系的原因。对于CNRMCM5模式,在春季AO正位相年,副热带西北太平洋上空存在明显的异常气旋和正降水异常,正降水异常通过Gill型大气响应对赤道西太平洋异常西风的形成和维持起着重要作用,异常西风通过激发向东传播的暖赤道Kelvin波对随后冬季El Nino事件的发生产生显著的影响;然而,在春季AO负位相年,副热带北太平洋的异常反气旋和负降水异常较弱,导致赤道西太平洋的异常东风不明显,因此,春季AO负异常对随后冬季La Nina的影响不显著。所以,CNRM-CM5模式能够较好地抓住春季AO对随后冬季ENSO事件的非对称性影响。相比之下,对于GISS-E2-H-CC模式,春季AO正(负)位相年副热带西北太平洋上存在显著的正(负)降水异常,通过Gill型大气响应在赤道西太平洋激发出明显的异常西(东)风从而影响随后冬季的El Nino(La Nina)事件。因此,在GISS-E2-H-CC模式中,春季AO对随后冬季ENSO具有对称性影响。另外,模式捕捉春季AO对随后冬季ENSO非对称性影响的能力与模式对春季AO空间结构的模拟能力有一定的联系。  相似文献   

18.
我国四季极端雨日数时空变化及其与海表温度异常的关系   总被引:3,自引:0,他引:3  
利用1960—2004年我国586个气象站的逐日降水观测资料,对每个季节和每个站点,以雨日降水量升序排列的第90个百分位值定义极端日降水阈值,分析揭示了我国四季极端雨日数的时空变化特征、与海表温度异常的关系以及相联系的大气环流异常型。结果表明,我国长江流域极端雨日数在冬季和夏季呈显著增加趋势,华北地区极端雨日数在冬季显著增加、而在夏季显著减少,华南地区极端雨日数在春季显著增加,东北地区极端雨日数在冬季和春季显著增加,而西北地区极端雨日数在四季均显著增加。各季极端雨日数在线性趋势变化之上表现年际和年代际变化特征,并且其典型异常型明显不同,春、秋季表现为长江以南与以北地区反位相的"偶极型"变化,夏季表现为长江流域与华南、华北地区反位相的"三极型"变化,冬季表现为全国大部分地区同位相的"单极型"变化。我国季节极端雨日数与印度洋-太平洋海表温度异常的关系主要表现为与ENSO的关系,而ENSO影响我国极端降水异常是通过相应的大气环流异常型来实现的。  相似文献   

19.
Sea surface temperature (SST) variations include negative feedbacks from the atmosphere, whereas SST anomalies are specified in stand-alone atmospheric general circulation simulations. Is the SST forced response the same as the coupled response? In this study, the importance of air–sea coupling in the Indian and Pacific Oceans for tropical atmospheric variability is investigated through numerical experiments with a coupled atmosphere-ocean general circulation model. The local and remote impacts of the Indian and Pacific Ocean coupling are obtained by comparing a coupled simulation with an experiment in which the SST forcing from the coupled simulation is specified in either the Indian or the Pacific Ocean. It is found that the Indian Ocean coupling is critical for atmospheric variability over the Pacific Ocean. Without the Indian Ocean coupling, the rainfall and SST variations are completely different throughout most of the Pacific Ocean basin. Without the Pacific Ocean coupling, part of the rainfall and SST variations in the Indian Ocean are reproduced in the forced run. In regions of large mean rainfall where the atmospheric negative feedback is strong, such as the North Indian Ocean and the western North Pacific in boreal summer, the atmospheric variability is significantly enhanced when air–sea coupling is replaced by specified SST forcing. This enhancement is due to the lack of the negative feedback in the forced SST simulation. In these regions, erroneous atmospheric anomalies could be induced by specified SST anomalies derived from the coupled model. The ENSO variability is reduced by about 20% when the Indian Ocean air–sea coupling is replaced by specified SST forcing. This change is attributed to the interfering roles of the Indian Ocean SST and Indian monsoon in western and central equatorial Pacific surface wind variations.  相似文献   

20.
观测事实显示,在E1 Ni(?)o发生期间,伴随着赤道中东太平洋的增暖,中纬度北大平洋中部表层海温(SST)常出现冷距平,而北美大陆西海岸SST则出现暖距平。借助观测资料分析和海气耦合模式模拟两种手段,检验了北太平洋对ENSO事件的上述响应。观测证据和数值模拟都支持有关学者提出的“大气桥”概念,即大气对赤道中东太平洋SST异常增暖的响应,随后强迫中纬度北太平洋,并导致那里SST的变冷,从而起到了连接热带和热带外特别是中纬度北太平洋的“桥梁”的作用。关于其机制,本文认为主要是海洋对大气强迫的动力响应导致那里的SST变冷,尽管潜热通量的贡献也很显著。至少模式结果证明短波辐射、长波辐射和感热通量的贡献都是次要的。进一步的分析揭示,北太平洋存在着线性独立于ENSO事件的所谓“北太平洋模态”,在空间型上,它和线性地依赖于ENSO事件的模态非常相近,即它们的纬向结构都呈现出扁平的“双极”型,只是彼此间SST距平极大值的中心位置不同。模拟结果表明,北太平洋模态与大气的耦合作用,主要是通过海气热通量交换实现的,其中短波辐射和长波辐射的作用居主导地位,而潜热通量的贡献则基本可以忽略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号