首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
Increasing concentrations of CO2 and other greenhouse gases (GHG) in the Earth's atmosphere have the potential to enhance the natural greenhouse effect, which may result in climatic changes. The main anthropogenic contributors to this increase are fossil fuel combustion, land use conversion, and soil cultivation. It is clear that overcoming the challenge of global climate change will require a combination of approaches, including increased energy efficiency, energy conservation, alternative energy sources, and carbon (C) capture and sequestration. The United States Department of Energy (DOE) is sponsoring the development of new technologies that can provide energy and promote economic prosperity while reducing GHG emissions. One option that can contribute to achieving this goal is the capture and sequestration of CO2 in geologic formations. An alternative approach is C sequestration in terrestrial ecosystsems through natural processes. Enhancing such natural pools (known as natural sequestration) can make a significant contribution to CO2 management strategies with the potential to sequester about 290 Tg C/y in U.S. soils. In addition to soils, there is also a large potential for C sequestration in above and belowground biomass in forest ecosystems.A major area of interest to DOE's fossil energy program is reclaimed mined lands, of which there may be 0.63 ×106 ha in the U.S. These areas are essentially devoid of soil C; therefore, they provide an excellent opportunity to sequester C in both soils and vegetation. Measurement of C in these ecosystems requires the development of new technology and protocols that are accurate and economically viable. Field demonstrations are needed to accurately determine C sequestration potential and to demonstrate the ecological and aesthetic benefits in improved soil and water quality, increased biodiversity, and restored ecosystems.The DOE's research program in natural sequestration highlights fundamental and applied studies, such as the development of measurement, monitoring, and verification technologies and protocols and field tests aimed at developing techniques for maximizing the productivity of hitherto infertile soils and degraded ecosystems.  相似文献   

2.
Terrestrial carbon pools in southeast and south-central United States   总被引:1,自引:0,他引:1  
Analyses of regional carbon sources and sinks are essential to assess the economical feasibility of various carbon sequestration technologies for mitigating atmospheric CO2 accumulation and for preventing global warming. Such an inventory is a prerequisite for regional trading of CO2 emissions. As a U.S. Department of Energy Southeast Regional Carbon Sequestration Partner, we have estimated the state-level terrestrial carbon pools in the southeast and south-central US. This region includes: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia. We have also projected the potential for terrestrial carbon sequestration in the region. Texas is the largest contributor (34%) to greenhouse gas emission in the region. The total terrestrial carbon storage (forest biomass and soils) in the southeast and south-central US is estimated to be 130 Tg C/year. An annual forest carbon sink (estimated as 76 Tg C/year) could compensate for 13% of the regional total annual greenhouse gas emission (505 Tg C, 1990 estimate). Through proper policies and the best land management practices, 54 Tg C/year could be sequestered in soils. Thus, terrestrial sinks can capture 23% of the regional total greenhouse emission and hence are one of the most cost-effective options for mitigating greenhouse emission in the region.  相似文献   

3.
Potential Soil C Sequestration on U.S. Agricultural Soils   总被引:1,自引:0,他引:1  
Soil carbon sequestration has been suggested as a means to help mitigate atmospheric CO2 increases, however there is limited knowledge aboutthe magnitude of the mitigation potential. Field studies across the U.S. provide information on soil C stock changes that result from changes in agricultural management. However, data from such studies are not readily extrapolated to changes at a national scale because soils, climate, and management regimes vary locally and regionally. We used a modified version of the Intergovernmental Panel on Climate Change (IPCC) soil organic C inventory method, together with the National Resources Inventory (NRI) and other data, to estimate agricultural soil C sequestration potential in the conterminous U.S. The IPCC method estimates soil C stock changes associated with changes in land use and/or land management practices. In the U.S., the NRI provides a detailed record of land use and management activities on agricultural land that can be used to implement the IPCC method. We analyzed potential soil C storage from increased adoption of no-till, decreased fallow operations, conversion of highly erodible land to grassland, and increased use of cover crops in annual cropping systems. The results represent potentials that do not explicitly consider the economic feasibility of proposed agricultural production changes, but provide an indication of the biophysical potential of soil C sequestration as a guide to policy makers. Our analysis suggests that U.S. cropland soils have the potential to increase sequestered soil C by an additional 60–70 Tg (1012g) C yr– 1, over present rates of 17 Tg C yr–1(estimated using the IPCC method), with widespread adoption of soil C sequestering management practices. Adoption of no-till on all currently annually cropped area (129Mha) would increase soil C sequestration by 47 Tg C yr–1. Alternatively, use of no-till on 50% of annual cropland, with reduced tillage practices on the other 50%, would sequester less – about37 Tg C yr–1. Elimination of summer fallow practices and conversionof highly erodible cropland to perennial grass cover could sequester around 20 and 28Tg C yr–1, respectively. The soil C sequestration potentialfrom including a winter cover crop on annual cropping systems was estimated at 40Tg C yr–1. All rates were estimated for a fifteen-yearprojection period, and annual rates of soil C accumulations would be expected to decrease substantially over longer time periods. The total sequestration potential we have estimated for the projection period (83 Tg C yr–1) represents about 5% of 1999total U.S. CO2 emissions or nearly double estimated CO2 emissionsfrom agricultural production (43 Tg C yr–1). For purposes ofstabilizing or reducing CO2 emissions, e.g., by 7% of 1990 levels asoriginally called for in the Kyoto Protocol, total potential soil C sequestration would represent 15% of that reduction level from projected 2008 emissions(2008 total greenhouse gas emissions less 93% of 1990 greenhouse gasemissions). Thus, our analysis suggests that agricultural soil C sequestration could play a meaningful, but not predominant, role in helping mitigate greenhouse gas increases.  相似文献   

4.
Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions.  相似文献   

5.
Grassland is one of the most widespread vegetation types worldwide and plays a significant role in regional climate and global carbon cycling. Understanding the sensitivity of Chinese grassland ecosystems to climate change and elevated atmospheric CO2 and the effect of these changes on the grassland ecosystems is a key issue in global carbon cycling. China encompasses vast grassland areas of 354 million ha of 17 major grassland types, according to a national grassland survey. In this study, a process-based terrestrial model the CENTURY model was used to simulate potential changes in net primary productivity (NPP) and soil organic carbon (SOC) of the Leymus chinensis meadow steppe (LCMS) under different scenarios of climatic change and elevated atmospheric CO2. The LCMS sensitivities, its potential responses to climate change, and the change in capacity of carbon stock and sequestration in the future are evaluated. The results showed that the LCMS NPP and SOC are sensitive to climatic change and elevated CO2. In the next 100 years, with doubled CO2 concentration, if temperature increases from 2.7-3.9˚C and precipitation increases by 10% NPP and SOC will increase by 7-21% and 5-6% respectively. However, if temperature increases by 7.5-7.8˚C and precipitation increases by only 10% NPP and SOC would decrease by 24% and 8% respectively. Therefore, changes in the NPP and SOC of the meadow steppe are attributed mainly to the amount of temperature and precipitation change and the atmospheric CO2 concentration in the future.  相似文献   

6.
Carbon Sequestration and the Restoration of Land Health   总被引:1,自引:0,他引:1  
Carbon sequestration, the conversion of greenhouse gas CO2 toorganic matter, offers a powerful tool with which to combat climate change. The enlargement of carbon sinks stored in soil and biota is an essential tool in buying time while mankind seeks means to reduce emissions of greenhouse gases and to reduce the elevated levels of atmospheric CO2. Carbon sequestration within the context of the Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCCC) also has great potential as an incentive for combating land degradation and desertification and restoring fertility to degraded land.Decisions regarding carbon sinks during finalization of the operational details of the Kyoto Protocol in 2001 fit well the needs of countries facing land degradation and desertification. However, incentives for such mitigation through the Clean Development Mechanism of the protocol are limited to forestry issues. Iceland provides a good example of the multiple role of carbon sequestration in meeting national commitments to UNFCCC, conserving and restoring biological diversity, combating soil erosion, revegetation of eroded land and reforestation. Linking carbon sequestration with such goals has resulted in increased funds for soil conservation and restoration of degraded land in Iceland.  相似文献   

7.
Carbon sequestration in the terrestrial biosphere is critical to mitigating the increasing anthropogenic CO2 content of the atmosphere. However, improved efficiency of methods for soil C measurement is important to better estimate terrestrial C inventories and fluxes at a regional and global scale. Laboratory based measurement of soil C involves intensive, time consuming, and costly methodology that limits applicability for large land areas. Recently, research efforts have focused on measuring soil C in situ using a variety of methods. These methods include Laser Induced Breakdown Spectroscopy (LIBS), Inelastic Neutron Scattering (INS), near-infrared spectroscopy (NIRS), and remote sensing. Basic fundamentals of each of these in situ methods for soil C determination are presented, and the differences among the methods and their relative advantages and disadvantages are discussed.  相似文献   

8.
全球CO2浓度增加造成的全球变暖已成为人类亟需解决的问题,陆地生态系统在过去几十年一直扮演着重要的碳汇角色,吸收了30%左右的人类活动排放CO2。本文调研分析了陆地生态系统固碳速率空间估算方法,包括样地调查、通量监测、模型模拟、遥感估算等,梳理了各种估算方法的研究现状与进展。样地调查、通量观测等方法可以提供点尺度的固碳速率直接测量信息,但存在观测样本有限、空间代表性不足等问题。模型模拟方法可以从机理的角度描述陆地碳、水、能量循环,模拟预测陆地生态系统固碳速率的状态和变化。然而,在模型建立过程中,抽象和简化会引入结构与假设的不确定性,以及模型驱动数据引入的不确定性等问题是碳循环模型模拟方法面临的重大挑战。卫星遥感具有全球覆盖、分辨率精细、时间序列观测等优点,结合机器学习方法,为地球大数据驱动的全球碳源汇估算提供了新的研究范式。但是,当前各种固碳速率的监测方法还没有满足高度时空异质性的陆地生态系统固碳量监测需求,未来需要整合地面观测、模型模拟和卫星遥感等多种技术手段,提供区域和全球尺度的陆地生态系统碳汇精确估算方法体系和科学数据产品。  相似文献   

9.
Carbon cycle feedbacks have been shown to be very important in predicting climate change over the next century. The response of the terrestrial carbon cycle to climate change depends on the competition between increased respiration due to warmer temperatures and increased uptake due to elevated CO2levels. Whether the terrestrial carbon cycle remains a sink for anthropogenic carbon, or switches to become a source, depends particularly on the response of soil respiration to temperature. Here we use observed global atmospheric CO2concentration to constrain the behaviour of soil respiration in a coupled climate–carbon cycle GCM.  相似文献   

10.
This paper discusses relationships between soil conservation, carbon sequestration, and the Kyoto Protocol. The Kyoto Protocol is the first attempt to use the flexibility of the global market place to stabilize and reduce GHG emissions, mitigate climate change, and promote sustainable development. The protocol emerged first as a framework agreement, but through international negotiations it is progressing into sets of legal articles. These impose obligations on all signatories, but they also identify opportunities for improved environmental land management at local, national and international levels. This is particularly true for soil conservation, where the sequestration of carbon above and below ground increases soil organic matter, enhances soil fertility, and improves production, while concomitantly reducing atmospheric CO2. It is a classic `win-win' situation. Both the evolving opportunities and the obligations under the Kyoto Protocol are discussed in the paper.  相似文献   

11.
We use a georeferenced model of ecosystem carbon dynamics to explore the sensitivity of global terrestrial carbon storage to changes in atmospheric CO2 and climate. We model changes in ecosystem carbon density, but we do not model shifts in vegetation type. A model of annual NPP is coupled with a model of carbon allocation in vegetation and a model of decomposition and soil carbon dynamics. NPP is a function of climate and atmospheric CO2 concentration. The CO2 response is derived from a biochemical model of photosynthesis. With no change in climate, a doubling of atmospheric CO2 from 280 ppm to 560 ppm enhances equilibrium global NPP by 16.9%; equilibrium global terrestrial ecosystem carbon (TEC) increases by 14.9%. Simulations with no change in atmospheric CO2 concentration but changes in climate from five atmospheric general circulation models yield increases in global NPP of 10.0–14.8%. The changes in NPP are very nearly balanced by changes in decomposition, and the resulting changes in TEC range from an increase of 1.1% to a decrease of 1.1%. These results are similar to those from analyses using bioclimatic biome models that simulate shifts in ecosystem distribution but do not model changes in carbon density within vegetation types. With changes in both climate and a doubling of atmospheric CO2, our model generates increases in NPP of 30.2–36.5%. The increases in NPP and litter inputs to the soil more than compensate for any climate stimulation of decomposition and lead to increases in global TEC of 15.4–18.2%.  相似文献   

12.
Environmental change in grasslands: Assessment using models   总被引:7,自引:0,他引:7  
Modeling studies and observed data suggest that plant production, species distribution, disturbance regimes, grassland biome boundaries and secondary production (i.e., animal productivity) could be affected by potential changes in climate and by changes in land use practices. There are many studies in which computer models have been used to assess the impact of climate changes on grassland ecosystems. A global assessment of climate change impacts suggest that some grassland ecosystems will have higher plant production (humid temperate grasslands) while the production of extreme continental steppes (e.g., more arid regions of the temperate grasslands of North America and Eurasia) could be reduced substantially. All of the grassland systems studied are projected to lose soil carbon, with the greatest losses in the extreme continental grassland systems. There are large differences in the projected changes in plant production for some regions, while alterations in soil C are relatively similar over a range of climate change projections drawn from various General Circulation Models (GCM's). The potential impact of climatic change on cattle weight gains is unclear. The results of modeling studies also suggest that the direct impact of increased atmospheric CO2 on photosynthesis and water use in grasslands must be considered since these direct impacts could be as large as those due to climatic changes. In addition to its direct effects on photosynthesis and water use, elevated CO2 concentrations lower N content and reduce digestibility of the forage.  相似文献   

13.
Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. The reduced carbon storage would then require further reductions in fossil fuel emissions to meet a given CO2 concentration target, thereby increasing the cost of meeting the target. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860–1995) show the largest damages occur in the Southeast and Midwestern regions of the United States, eastern Europe, and eastern China. The largest reductions in carbon storage for the period 1950–1995, 41%, occur in eastern Europe. Scenarios for the 21st century developed with the MIT Integrated Global Systems Model (IGSM) lead to even greater negative effects on carbon storage in the future. In some regions, current land carbon sinks become carbon sources, and this change leads to carbon sequestration decreases of up to 0.4 Pg C yr−1 due to damage in some regional ozone hot spots. With a climate policy, failing to consider the effects of ozone damage on carbon sequestration would raise the global costs over the next century of stabilizing atmospheric concentrations of CO2 equivalents at 550 ppm by 6 to 21%. Because stabilization at 550 ppm will reduce emission of other gases that cause ozone, these additional benefits are estimated to be between 5 and 25% of the cost of the climate policy. Tropospheric ozone effects on terrestrial ecosystems thus produce a surprisingly large feedback in estimating climate policy costs that, heretofore, has not been included in cost estimates.  相似文献   

14.
The micrometeorological technique of eddy covariance is a powerful tool for characterizing the carbon (C) budget of terrestrial ecosystems. Eddy covariance method was used for estimating Net Ecosystem Exchange (NEE) of carbon dioxide between atmosphere and revegetated manganese mine spoil dump at Gumgaon, India. In this paper, we analyzed the diel CO2 flux pattern and its response to various physical environmental conditions. The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes. Study of diel pattern of CO2 flux showed that carbon uptake was dependent on sunlight. Effect of temperature and latent heat on the CO2 flux showed that rate of CO2 uptake increased proportionally, but later declined due to various factors like stomatal response, high evaporative demand, circadian rhythm and/or a combination of all three. Net ecosystem production of revegetated land was found to be 28.196 KgC/ha/day whereas average net carbon release by the ecosystem, through respiration was observed to be 5.433 KgC/ha/day. Thus, quantifying net carbon (C) storage in degraded land is a necessary step in the validation of carbon sequestration estimates and in assessing the possible role of these ecosystems in offsetting adverse impacts of fossil fuel emissions.  相似文献   

15.
A terrestrial ecosystem model (Sim-CYCLE) was driven by multiple climate projections to investigate uncertainties in predicting the interactions between global environmental change and the terrestrial carbon cycle. Sim-CYCLE has a spatial resolution of 0.5°, and mechanistically evaluates photosynthetic and respiratory CO2 exchange. Six scenarios for atmospheric-CO2 concentrations in the twenty-first century, proposed by the Intergovernmental Panel on Climate Change, were considered. For each scenario, climate projections by a coupled atmosphere–ocean general circulation model (AOGCM) were used to assess the uncertainty due to socio-economic predictions. Under a single CO2 scenario, climate projections with seven AOGCMs were used to investigate the uncertainty stemming from uncertainty in the climate simulations. Increases in global photosynthesis and carbon storage differed considerably among scenarios, ranging from 23 to 37% and from 24 to 81 Pg C, respectively. Among the AOGCM projections, increases ranged from 26 to 33% and from 48 to 289 Pg C, respectively. There were regional heterogeneities in both climatic change and carbon budget response, and different carbon-cycle components often responded differently to a given environmental change. Photosynthetic CO2 fixation was more sensitive to atmospheric CO2, whereas soil carbon storage was more sensitive to temperature. Consequently, uncertainties in the CO2 scenarios and climatic projections may create additional uncertainties in projecting atmospheric-CO2 concentrations and climates through the interactive feedbacks between the atmosphere and the terrestrial ecosystem.  相似文献   

16.
Seagrass meadows are natural carbon storage hotspots at risk from global change threats, and their loss can result in the remineralization of soil carbon stocks and CO2 emissions fueling climate change. Here we used expert elicitation and empirical evidence to assess the risk of CO2 emissions from seagrass soils caused by multiple human-induced, biological and climate change threats. Judgments from 41 experts were synthesized into a seagrass CO2 emission risk score based on vulnerability factors (i.e., spatial scale, frequency, magnitude, resistance and recovery) to seagrass soil organic carbon stocks. Experts perceived that climate change threats (e.g., gradual ocean warming and increased storminess) have the highest risk for CO2 emissions at global spatial scales, while direct threats (i.e., dredging and building of a marina or jetty) have the largest CO2 emission risks at local spatial scales. A review of existing peer-reviewed literature showed a scarcity of studies assessing CO2 emissions following seagrass disturbance, but the limited empirical evidence partly confirmed the opinion of experts. The literature review indicated that direct and long-term disturbances have the greatest negative impact on soil carbon stocks per unit area, highlighting that immediate management actions after disturbances to recover the seagrass canopy can significantly reduce soil CO2 emissions. We conclude that further empirical evidence assessing global change threats on the seagrass carbon sink capacity is required to aid broader uptake of seagrass into blue carbon policy frameworks. The preliminary findings from this study can be used to estimate the potential risk of CO2 emissions from seagrass habitats under threat and guide nature-based solutions for climate change mitigation.  相似文献   

17.
Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (~10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285–570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.  相似文献   

18.
Soil Carbon Sequestration in India   总被引:4,自引:0,他引:4  
R. Lal 《Climatic change》2004,65(3):277-296
With a large land area and diverse ecoregions, there is a considerable potential of terrestrial/soil carbon sequestration in India. Of the total land area of 329 million hectares (Mha), 297 Mha is the land area comprising 162 Mha of arable land, 69 Mha of forest and woodland, 11 Mha of permanent pasture, 8 Mha of permanent crops and 58 Mha is other land uses. Thesoil organic carbon (SOC) pool is estimated at 21 Pg (petagram = Pg = 1 ×1015 g= billion ton) to 30-cm depth and 63 Pg to 150-cm depth. The soil inorganic carbon (SIC) pool is estimated at 196 Pg to 1-m depth. The SOC concentration in most cultivated soils is less than 5 g/kg compared with 15 to 20 g/kg in uncultivated soils. Low SOC concentration is attributed to plowing, removal of crop residue and other biosolids, and mining of soil fertility. Accelerated soil erosion by water leads to emission of 6 Tg C/y. Important strategies of soil C sequestration include restoration of degraded soils, and adoption of recommended management practices (RMPs) of agricultural and forestry soils. Potential of soil C sequestration in India is estimated at 7 to 10 Tg C/y for restoration of degraded soils and ecosystems, 5 to 7 Tg C/y for erosion control, 6 to 7 Tg C/y for adoption of RMPs on agricultural soils, and 22 to 26 Tg C/y for secondary carbonates. Thus, total potential of soil C sequestration is 39 to 49 (44± 5) Tg C/y.  相似文献   

19.
Forests play an important role in sequestrating carbon from the atmosphere. Since the 1980s, reforestation activities have been implemented in the area surrounding the Qianyanzhou Forest Experimental Station in Jiangxi Province, China. Farmland and heavily eroded waste land were replanted with fruit, orchards and forest plantations. The area surrounding the Qianyanzhou Forest Experimental Station was selected as research site to analyze the potential of reforestation in carbon sequestration. This study evaluates the variation of soil organic carbon storage under the different land use types. Soil organic carbon storage varied greatly with land use types. From 1984 to 2002, soil organic carbon storage increased 2.45 × 106 kg across eight land use types. This study demonstrates the potential for carbon sequestration in soils from reforestation. However, a complete understanding of soil carbon fluxes at the landscape scale will depend on the potential and retention period of soil organic carbon.  相似文献   

20.
A process-based approach to modelling the effects of land use change and climate change on the carbon balance of terrestrial ecosystems was applied at global scale. Simulations were run both with and without land use change. In the absence of land use change between 1700 and 1990, carbon storage in terrestrial ecosystems was predicted to increase by 145 Pg C. When land use change was represented during this period, terrestrial ecosystems became a net source of 97 Pg C. Land use change was directly responsible for a flux of 222 Pg C, slightly higher but close to estimates from other studies. The model was then run between 1990 and 2100 with a climate simulated by a GCM. Simulations were run with three land use change scenarios: 1. no land use change; 2. land use change specified by the SRES B2 scenario, and; 3. land use change scaled with population change in the B2 scenario. In the first two simulations with no or limited land use change, the net terrestrial carbon sink was substantial (358 and 257 Pg C, respectively). However, with the population-based land-use change scenario, the losses of carbon through land use change were close to the carbon gains through enhanced net ecosystem productivity, resulting in a net sink near zero. Future changes in land use are highly uncertain, but will have a large impact on the future terrestrial carbon balance. This study attempts to provide some bounds on how land use change may affect the carbon sink over the nextcentury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号