首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
Twenty seven buildings collapsed and 2076 buildings were heavily damaged during 17 August 1999 Izmit Earthquake in Avc?lar (west of Istanbul), which is nearly 100 km from the epicenter of the earthquake. The geology of Avc?lar consists of Upper Miocene poorly bounded conglomerate and sandstone (Çukurçe?me formation), claystone with sandstone and limestone interbedding (Güngören member) and limestone with sandstone and claystone interbedding (Bak?rköy formation). Lithological and geotechnical parameters of these formations in Avc?lar are not different from non damaged parts of the western Istanbul such as Zeytinburnu, Bak?rköy and Beylikdüzü, but these formations were cut by several faults in the damaged area. Collapsed and damaged buildings are located on this fault zone. Thus, cause of large amplification and damage in Avc?lar might be related with this fault zone because the fault zone behaves as a waveguide trapping seismic energy.  相似文献   

2.
The aim of this study is the comparison between the fundamental periods identified experimentally and those calculated using the formulas given in the Algerian Seismic Code (RPA 99) for vulnerability assessment and for experimental data collection of selected sample of old buildings. The results obtained for vulnerability assessment will then be extrapolated to buildings of the same typology built during the 1949 to 1954 period in the northern part of Algeria. From 1949 to 1954, the reinforced concrete constructions in Algeria were built before the first generation of the Algerian Seismic Code. These buildings being old are certainly weakened by the occupancy activities and seismic event loads. Hence, the evaluation of their vulnerability with respect to the regional seismic hazard requires the knowledge of their structure on a site capacity. The empirical formulas to calculate the fundamental period of a building are based on the Algerian Earthquake Code (RPA 99) .These formulas consider only the geometrical dimension (length, width and height) and the structural design of the buildings. The fundamental periods of vibration of twenty-two buildings, located in Algiers, calculated using the empirical formulas given in the RPA 99 are lower than those identified experimentally. A question then rises, do these tested buildings present any damage or not? As five of these buildings were tested before the 21 May 2003 earthquake, the experimental testing highlighted a decrease in the fundamental frequency which means that these buildings are damaged. Hence, for vulnerability assessment, the empirical formulas given in the Algerian Seismic Code (RPA 99) may not be appropriate for vulnerability assessment of the old buildings built during the 1949 to 1954 period.  相似文献   

3.
随着既有建筑物的增层改造工程的发展和技术的日益成熟 ,为了提高原有建筑物地基土强度和变形能力 ,对其基础加固处理也愈加频繁。如何准确有效地评价其地基加固质量及其空间变化的均匀性是关系此类工程安全可靠的重要保证。本文以某一工程为例 ,讨论既有建筑物增层改造工程的地基加固质量的检测和综合评价方法。该建筑物建于 5 0年代 ,原设计为 5层 ,现增层为 6层 ,采用高压注浆方法进行地基加固处理.  相似文献   

4.
Almost all engineering evacuation models define the objective as minimizing the time required to clear the region or total travel time, thus making an implicit assumption that who will or should evacuate is known. Conservatively evacuating everyone who may be affected may be the best strategy for a given storm, but there is a growing recognition that in some places that strategy is no longer viable and in any case, may not be the best alternative by itself. Here, we introduce a new bi-level optimization that reframes the decision more broadly. The upper level develops an evacuation plan that describes, as a hurricane approaches, who should stay and who should leave and when, so as to minimize both risk and travel time. The lower level is a dynamic user equilibrium (DUE) traffic assignment model. The model includes four novel features: (1) it refocuses the decision on the objectives of minimizing both risk and travel time; (2) it allows direct comparison of more alternatives, including for the first time, sheltering-in-place; (3) it uses a hurricane-scenario-based analysis that explicitly represents the critically important uncertainty in hurricane track, intensity, and speed; and (4) it includes a new DUE algorithm that is efficient enough for full-scale hurricane evacuation applications. The model can be used both to provide an evacuation plan and to evaluate a plan’s performance in terms of risk and travel time, assuming the plan is implemented and a specified hurricane scenario then actually occurs. We demonstrate the model with a full-scale case study for Eastern North Carolina.  相似文献   

5.
耿鸿江 《水文》1996,(2):13-16
在用对数变换方法使幂函数或指数函数的曲线拟合线性化时,人们往往忽视这样的问题:(1)哪些模型结构可以采用对数变换,(2)对数变换会会会改变模型残差的一些性质;(3)这种化曲为直的回归方法估计出的原模型中的参数是否具有无偏性和有效性,针对上述问题做了较为深入的探讨,并提出了相应的改进方法。  相似文献   

6.
The earthquake closet: rendering early-warning useful   总被引:1,自引:1,他引:0  
Max Wyss 《Natural Hazards》2012,63(2):761-768
Early-warning of imminently approaching strong shaking that could have fatal consequences is a research field that has made great progress. However, its potential to save lives has a serious Achilles heel: The time for getting to safety is 5 to 10?s only, in those cities that need warnings most. Occupants of the upper floors cannot get out of their buildings and narrow streets are not a safe place in strong earthquakes. The official advice, to crawl under a table, protects from falling objects only, but not from collapsing buildings. Thus, only about 10?% of a city??s population can benefit from early-warnings, unless they have access to an earthquake protection unit that is strong enough to improve their chances of survival and not being injured by factors of 1,000 to 30,000. The purpose of this paper is to generate discussion on how to use early-warning to improve the safety for occupants of buildings exposed to strong earthquake shaking.  相似文献   

7.
Andrej Gosar 《Natural Hazards》2012,62(3):1059-1079
Site effects studies using microtremor free-field measurements were performed recently in five Slovenian towns characterized by increased seismic hazard to determine resonance frequency of soft sediments. In this study, microtremor investigations were extended to the measurements inside buildings to determine their fundamental frequencies and to assess the possible occurrence of soil-structure resonance. Measurements were performed in 66 buildings, and by spectral analysis, it was possible to determine reliably fundamental frequencies (longitudinal and transverse) for 58 buildings. Residential masonry houses with two or three floors prevail, but some buildings of up to six-floor height were also surveyed. Microtremor measurements have proved to be an effective tool for assessment of fundamental frequencies of buildings. Such experimental approach is very valuable, as analytical seismic evaluation of an existing building is usually very difficult. Statistical analysis of the fundamental frequency versus number of floors (height) was performed to generalize identification of potential soil-structure resonance. The difference in average fundamental frequency is very clear between buildings with two and three floors. The average value of both horizontal components for two-floor buildings is 9.11?±?1.94?Hz, and for three-floor buildings, 7.03?±?1.46?Hz. On the other hand, the difference in frequencies between three- and four-floor buildings (average for later is 6.52?±?0.80?Hz) is very small. The average fundamental frequencies for five- and six-floor buildings are lower, 4.62?±?0.64?Hz and 5.30?±?0.70?Hz, respectively, with no statistically significant difference between both types. Most Slovenian towns are located in shallow sedimentary basins where the free-field soft covers frequencies are in the range 2?C20?Hz. On the other hand, houses with two and three floors represent the large majority of the building stock. To assess the possible occurrence of soil-structure resonance in general, an average fundamental frequency?±?one standard deviation interval is obtained for these two building heights, which gives the range 5.6?C11.1?Hz. The free-field data show that this frequency range occupies from 22?% of the surveyed area in the Kobarid basin to up to 59?% in the Bovec basin and is in between for other three basins. This leads to the conclusion that the possible occurrence of soil-structure resonance is a serious issue for typical geological situations, in which towns are located.  相似文献   

8.
In a conventional approach, the mechanical behaviour of a structure subjected to seismic or blast waves is treated separately from its surroundings, and in many cases, the dynamic coupling effect between multiple structures and the waves propagating in the ground is disregarded. However, if many structures are built densely in a developed urban area, this dynamic interaction may not become negligible. The first purpose of this contribution is to briefly show the effect of multiple interactions between waves and surface buildings in a town. The analysis is based on a recently developed, fully coupled, rigorous mathematical study, and for simplicity, each building in the town is represented by a rigid foundation, a mass at the top and an elastic spring that connects the foundation and mass. The buildings stand at regular spatial intervals on a linear elastic half-space and are subjected to two-dimensional anti-plane vibrations. It is found that the buildings in this model significantly interact with each other through the elastic ground, and the resonant (eigen) frequencies of the collective system (buildings or town) become lower than that of a single building with the same rigid foundation. This phenomenon may be called the “town effect” or “city effect.” Then, second, it is shown that the actual, unique structural damage pattern caused by the 1976 Friuli, Italy, earthquake may better be explained by this “town effect,” rather than by investigating the seismic performance of each damaged building individually. The results suggest that it may also be possible to evaluate the physical characteristics of incident seismic/blast waves “inversely” from the damage patterns induced to structures by the waves.  相似文献   

9.
During an earthquake, buildings which are vulnerable to seismic loads will be damaged, resulting in property loss and the potential for casualties. To reduce loss of life and injury, the relationship between earthquake-induced building failure and injury severity and distribution needs to be clarified. To this end, a methodology and a series of data collection forms were developed to collect pertinent data for post-event analysis and to provide a basis for structural triage in the field shortly following an earthquake for search and rescue purposes. The forms were developed in four steps: (1) identifying the variables which affect the outcome of an occupant in a damaged building; (2) classifying the variables into three levels of priority for data collection; (3) designing the forms; and (4) applying the forms to damaged buildings from past earthquakes. These forms represent a significant departure from existing forms in that they consider both casualties and building damage jointly in a consistent format. This paper describes the first two steps of the development process; a companion paper outlines the latter components.  相似文献   

10.
The magnitude 9.0 Tohoku or Sendai Earthquake ( Fig. 1 ) struck just off the northeast coast of Honshu, Japan on 11 March 2011 making it the fourth largest earthquake to be recorded since 1900, and the largest Japanese earthquake since modern seismometers were developed 130 years ago. Despite the earthquake being much more powerful than had been expected from the subduction zone east of Honshu, the earthquake preparedness of Japan resulted in relatively little earthquake damage—despite the protracted shaking with ground accelerations up to three times that of gravity. However, it was the resulting 10–15 metre high tsunami waves that wreaked havoc along the coastal plain, resulting in a death toll in the tens of thousands and an on‐going drama at the Fukushima I nuclear power plant. Modern seismology has its origins in the analyses of the 1906 San Francisco and 1923 Great Kanto earthquakes. The 2011 Tohoku (or ‘northeast’) earthquake looks set to similarly significantly advance our understanding of earthquakes and tsunamis due to the unprecedented volume of seismic, GPS, tide gauge and video data available. There is much information to be gained on how large earthquakes rupture, how buildings behave under prolonged severe shaking and how tsunamis propagate.
Figure 1 Open in figure viewer PowerPoint Tohoku earthquake global displacement wavefield from IRIS. http://www.iris.edu/hq/files/iris_news/images/Sendai_RS.jpg  相似文献   

11.
On May 12, 2008, a massive earthquake occurred along the Longmen Mountain Central Fault in Sichuan Province, China, causing serious damages to buildings near the fault. As the Longmen Mountain Central Fault and the Anterior Fault both traversed Dujiangyan and Pengzhou cities, the seismic intensity in these areas reached levels IX?CXI. Therefore, these two cities were among the most seriously damaged regions. In this article, the types of damage to buildings in the two cities and their affiliated towns or villages are investigated and reported. It is found that the damage to a building is related to its structure type, distance from the faults, and so on. The results provide valuable information on the seismic resistance of buildings in similar areas.  相似文献   

12.

Typhoon Lionrock, also known as the national number 1610 in Japan, caused severe flooding in east Japan in August 28–31, 2016, leaving a death toll of 22. With a maximum sustained wind speed of ~?220 km/h from the Joint Typhoon Warning Center’s best track, Lionrock was classified as a category 4 hurricane in Saffir–Simpson Hurricane Wind Scale and as a typhoon in Japan Meteorological Agency’s scale. Lionrock was among unique typhoons as it started its landfall from north of Japan. Here, we studied the characteristics of this typhoon through tide gauge data analysis, field surveys and numerical modeling. Tide gauge analysis showed that the surges generated by Lionrock were in the ranges of 15–55 cm with surge duration of 0.8–3.1 days. Our field surveys revealed that the damage to coastal communities/structures was moderate although it caused severe flooding inland. We measured a maximum coastal wave runup of 4.3 m in Iwaisaki. Such a runup was smaller than that generated by other category 4 typhoons hitting Japan in the past. Our numerical model was able to reproduce the storm surge generated by the 2016 Typhoon Lionrock. This validated numerical model can be used in the future for typhoon-hazard studies along the coast of northeastern Japan. Despite relatively small surge/wave runups in coastal areas, Lionrock’s death toll was more than that of some other category 4 typhoons. We attribute this to various primary (e.g., flooding, surges, waves, strong winds) and secondary (e.g., landslides, coastal erosions, debris flows, wind-blown debris) mechanisms and their combinations and interactions that contribute to damage/death during a typhoon event.

  相似文献   

13.
Simulation-based optimization methods have been recently proposed for calibrating geotechnical models from laboratory and field tests. In these methods, geotechnical parameters are identified by matching model predictions to experimental data, i.e. by minimizing an objective function that measures the difference between the two. Expensive computational models, such as finite difference or finite element models are often required to simulate laboratory or field geotechnical tests. In such cases, simulation-based optimization might prove demanding since every evaluation of the objective function requires a new model simulation until the optimum set of parameter values is achieved. This paper introduces a novel simulation-based “hybrid moving boundary particle swarm optimization” (hmPSO) algorithm that enables calibration of geotechnical models from laboratory or field data. The hmPSO has proven effective in searching for model parameter values and, unlike other optimization methods, does not require information about the gradient of the objective function. Serial and parallel implementations of hmPSO have been validated in this work against a number of benchmarks, including numerical tests, and a challenging geotechnical problem consisting of the calibration of a water infiltration model for unsaturated soils. The latter application demonstrates the potential of hmPSO for interpreting laboratory and field tests as well as a tool for general back-analysis of geotechnical case studies.  相似文献   

14.
Iran is one of the most seismically active countries of the world located on the Alpine-Himalayan earthquake belt. More than 180,000 people were killed due to earthquakes in Iran during the last five decades. Considering the fact that most Iranians live in masonry and non-engineered houses, having a comprehensive program for decreasing the vulnerability of society holds considerable importance. For this reason, loss estimation should be done before an earthquake strikes to prepare proper information for designing and selection of emergency plans and the retrofitting strategies prior to occurrence of earthquake. The loss estimation process consists of two principal steps of hazard analysis and vulnerability assessment. After identifying the earthquake hazard, the first step is to evaluate the vulnerability of residential buildings and lifelines and also the social and economic impacts of the earthquake scenarios. Among these, residential buildings have specific importance, because their destruction will disturb the daily life and result in casualties. Consequently, the vulnerability assessment of the buildings in Iran is important to identify the weak points in the built environment structure. The aim of this research is to prepare vulnerability curves for the residential buildings of Iran to provide a proper base for estimating probable damage features by future earthquakes. The estimation may contribute fundamentally for better seismic performance of Iranian societies. After a brief review of the vulnerability assessment methods in Iran and other countries, through the use of the European Macroseismic method, a model for evaluating the vulnerability of the Iranian buildings is proposed. This method allows the vulnerability assessment for numerous sets of buildings by defining the vulnerability curves for each building type based on the damage observations of previous earthquakes. For defining the vulnerability curves, a building typology classification is presented in this article, which is representative of Iranian building characteristics. The hazard is described in terms of the macroseismic intensity and the EMS-98 damage grades have been considered for classifying the physical damage to the buildings. The calculated vulnerability indexes and vulnerability curves show that for engineered houses there is not any notable difference between the vulnerability of Iranian and Risk-UE building types. For the non-engineered houses, the vulnerability index of brick and steel structures is less than the corresponding values of the other unreinforced masonry buildings of Iran. The vulnerability index of unreinforced and masonry buildings of Iran are larger than the values of the similar types in Risk-UE and so the Iranian buildings are more vulnerable in this regard.  相似文献   

15.
Realizations generated by conditional simulation techniques must honor as much data as possible to be reliable numerical models of the attribute under study. The application of optimization methods such as simulated annealing to stochastic simulation has the potential to honor more data than conventional geostatistical simulation techniques. The essential feature of this approach is the formulation of stochastic imaging as an optimization problem with some specified objective function. The data to be honored by the stochastic images are coded as components in a global objective function. This paper describes the basic algorithm and then addresses a number of practical questions: (1) what are the criteria for adding a component to the global objective function? (2) what perturbation mechanism should be employed in the annealing simulation? (3) when should the temperature be lowered in the annealing procedure? (4) how are edge/border nodes handled? (5) how are local conditioning data handled? and (6) how are multiple components weighted in the global objective function?  相似文献   

16.
We present a set of numerical models to investigate how transform faults initiate in pull‐apart basins or transform continental margins. The model represents an elastic plate with three aligned weak spots. Applying strain on the edge of the model firstly propagates extensional cracks from the pre‐existing damaged spots. The subsequent evolution depends on the angle (obliquity) between the applied strain and the alignment of the damaged spots. For obliquity <50°, transform faults form to connect en‐échelon divergent cracks; for obliquity >60°, transtensional transfer zones connect the divergent cracks and no transform fault forms. These experiments suggest that pull‐apart basins do not form as previously assumed by connection of overlapping transform faults, but that transform faults form as connections of extensional areas.  相似文献   

17.
High-resolution space-borne remote sensing data are investigated for their potential to extract relevant parameters for a vulnerability analysis of buildings in European countries. For an evaluation of large earthquake scenarios, the number of parameters in models for vulnerability is reduced to a minimum of relevant information such as the type of building (age, material, number of storeys) and the geological and spatial context. Building-related parameters can be derived from remote sensing data either directly (e.g. height) or indirectly based on the recognition of the urban structure type in which the buildings are located. With the potential of a fully- or semi-automatic inventory of the buildings and their parameters, high-resolution satellite data and techniques for their processing are a useful supporting tool for the assessment of vulnerability.  相似文献   

18.
A generic framework for the computation of derivative information required for gradient-based optimization using sequentially coupled subsurface simulation models is presented. The proposed approach allows for the computation of any derivative information with no modification of the mathematical framework. It only requires the forward model Jacobians and the objective function to be appropriately defined. The flexibility of the framework is demonstrated by its application in different reservoir management studies. The performance of the gradient computation strategy is demonstrated in a synthetic water-flooding model, where the forward model is constructed based on a sequentially coupled flow-transport system. The methodology is illustrated for a synthetic model, with different types of applications of data assimilation and life-cycle optimization. Results are compared with the classical fully coupled (FIM) forward simulation. Based on the presented numerical examples, it is demonstrated how, without any modifications of the basic framework, the solution of gradient-based optimization models can be obtained for any given set of coupled equations. The sequential derivative computation methods deliver similar results compared to FIM methods, while being computationally more efficient.  相似文献   

19.
Hengjian  Lu  Kohiyama  Masayuki  Horie  Kei  Maki  Norio  Hayashi  Haruo  Tanaka  Satoshi 《Natural Hazards》2003,29(3):387-403
The relationship between building damage patterns and human casualties in Nishinomiya City – one of the most heavily damaged cities in the 1995 Hanshin-Awaji Earthquake Disaster – was investigated using photographs of damaged buildings. First, the photographs of buildings in which casualties occurred were identified, and the building damage patterns were judged based on the photographs considering the existence of survival space. Then the relationship between the building damage pattern and casualty occurrence, and the characteristics of casualty distribution, were investigated. The main findings were as follows: Most casualties occurred in relatively old two-story wooden buildings in which the ground floor completely collapsed without survival space; casualties occurred at all building damage levels including ``no damage', and it can be seen that building damage is the major, but not the sole cause, of casualties in an earthquake; in Nishinomiya City, the regional distributions of casualties due to the collapse of buildings that left no survival space is similar to that of casualties due to other types of building damage.  相似文献   

20.
Earthquake disaster is still the number one among all natural disasters, particularly, in terms of destructive power in causing deaths. Can earthquake engineers control seismic casualties through the seismic design of buildings? For this purpose, a conception of casualty control based seismic design is presented and a “two-step decision-making” method is proposed for determining the optimum seismic design intensity (or ground-motion) for controlling both seismic death and economic losses. The key problems in establishing the model are to determine the appropriate socially acceptable level of earthquake mortality and establish the corresponding objective function and /or constraint conditions in determining the optimum seismic design intensity. Ten different grades of socially acceptable mortality are suggested and the final socially acceptable mortality level was proposed for seismic design based on a questionnaire that was distributed nationwide in China. Finally, the method was applied to eight cities with different seismic hazard in China and the effects of various grades of acceptable earthquake mortality on seismic design intensity are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号