首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John Chambers 《Icarus》2006,180(2):496-513
A new semi-analytic model for the oligarchic growth phase of planetary accretion is developed. The model explicitly calculates damping and excitation of planetesimal eccentricities e and inclinations i due to gas drag and perturbations from embryos. The effects of planetesimal fragmentation, enhanced embryo capture cross sections due to atmospheres, inward planetesimal drift, and embryo-embryo collisions are also incorporated. In the early stages of oligarchic growth, embryos grow rapidly as e and i fall below their equilibrium values. The formation of planetesimal collision fragments also speeds up embryo growth as fragments have low-e, low-i orbits, thereby optimizing gravitational focussing. At later times, the presence of thick atmospheres captured from the nebula aids embryo growth by increasing their capture cross sections. Planetesimal drift due to gas drag can lead to substantial inward transport of solid material. However, inward drift is greatly reduced when embryo atmospheres are present, as the drift timescale is no longer short compared to the accretion timescale. Embryo-embryo collisions increase embryo growth rates by 50% compared to the case where growth is solely due to accretion of planetesimals. Formation of 0.1-Earth-mass protoplanets at 1 AU and 10-Earth-mass cores at 5 AU requires roughly 0.1 and 1 million years respectively, in a nebula where the local solid surface density is 7 g cm−2 at each of these locations.  相似文献   

2.
As planetary embryos grow, gravitational stirring of planetesimals by embryos strongly enhances random velocities of planetesimals and makes collisions between planetesimals destructive. The resulting fragments are ground down by successive collisions. Eventually the smallest fragments are removed by the inward drift due to gas drag. Therefore, the collisional disruption depletes the planetesimal disk and inhibits embryo growth. We provide analytical formulae for the final masses of planetary embryos, taking into account planetesimal depletion due to collisional disruption. Furthermore, we perform the statistical simulations for embryo growth (which excellently reproduce results of direct N-body simulations if disruption is neglected). These analytical formulae are consistent with the outcome of our statistical simulations. Our results indicate that the final embryo mass at several AU in the minimum-mass solar nebula can reach about ∼0.1 Earth mass within 107 years. This brings another difficulty in formation of gas giant planets, which requires cores with ∼10 Earth masses for gas accretion. However, if the nebular disk is 10 times more massive than the minimum-mass solar nebula and the initial planetesimal size is larger than 100 km, as suggested by some models of planetesimal formation, the final embryo mass reaches about 10 Earth masses at 3-4 AU. The enhancement of embryos’ collisional cross sections by their atmosphere could further increase their final mass to form gas giant planets at 5-10 AU in the Solar System.  相似文献   

3.
Abstract— The primordial asteroid belt contained at least several hundred and possibly as many as 10,000 bodies with diameters of 1000 km or larger. Following the formation of Jupiter, nebular gas drag combined with passage of such bodies through Jovian resonances produced high eccentricities (e = 0.3‐0.5), low inclinations (i < 0.5°), and, therefore, high velocities (3–10 km/s) for “resonant” bodies relative to both nebular gas and non‐resonant planetesimals. These high velocities would have produced shock waves in the nebular gas through two mechanisms. First, bow shocks would be produced by supersonic motion of resonant bodies relative to the nebula. Second, high‐velocity collisions of resonant bodies with non‐resonant bodies would have generated impact vapor plume shocks near the collision sites. Both types of shocks would be sufficient to melt chondrule precursors in the nebula, and both are consistent with isotopic evidence for a time delay of ?1‐1.5 Myr between the formation of CAIs and most chondrules. Here, initial simulations are first reported of impact shock wave generation in the nebula and of the local nebular volumes that would be processed by these shocks as a function of impactor size and relative velocity. Second, the approximate maximum chondrule mass production is estimated for both bow shocks and impact‐generated shocks assuming a simplified planetesimal population and a rate of inward migration into resonances consistent with previous simulations. Based on these initial first‐order calculations, impact‐generated shocks can explain only a small fraction of the minimum likely mass of chondrules in the primordial asteroid belt (?1024‐1025g). However, bow shocks are potentially a more efficient source of chondrule production and can explain up to 10–100 times the estimated minimum chondrule mass.  相似文献   

4.
We examine the orbital evolution of planetesimals under the influence of Jupiter's perturbations and nebular gas drag, under the assumption that gas persisted in the asteroid region for some time after Jupiter attained its final mass. Two distinct mechanisms, associated with the 2 : 1 and 3 : 2 mean motion resonances, can excite eccentricities to high values, despite the damping effect of drag. If Jupiter's eccentricity was comparable to its present value, planetesimals can be temporarily trapped in the 2 : 1 resonance. Bodies crossing the 3 : 2 resonance can enter a region of phase space with overlapping high-order resonances. Both mechanisms can produce eccentricities greater than 0.5 for asteroid-sized planetesimals. The combination of resonant perturbations and drag causes secular decay of semimajor axes, resulting in migration of bodies from the outer to inner belt. Inclinations remain low, implying significant collisional evolution during this migration. Velocities of resonant bodies relative to the gas are highly supersonic; these would have been a source of shock waves in the solar nebula.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, along the family of periodic orbits and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.  相似文献   

6.
S. Inaba  G.W. Wetherill 《Icarus》2003,166(1):46-62
We have calculated formation of gas giant planets based on the standard core accretion model including effects of fragmentation and planetary envelope. The accretion process is found to proceed as follows. As a result of runaway growth of planetesimals with initial radii of ∼10 km, planetary embryos with a mass of ∼1027 g (∼ Mars mass) are found to form in ∼105 years at Jupiter's position (5.2 AU), assuming a large enough value of the surface density of solid material (25 g/cm2) in the accretion disk at that distance. Strong gravitational perturbations between the runaway planetary embryos and the remaining planetesimals cause the random velocities of the planetesimals to become large enough for collisions between small planetesimals to lead to their catastrophic disruption. This produces a large number of fragments. At the same time, the planetary embryos have envelopes, that reduce energies of fragments by gas drag and capture them. The large radius of the envelope increases the collision rate between them, resulting in rapid growth of the planetary embryos. By the combined effects of fragmentation and planetary envelope, the largest planetary embryo with 21M forms at 5.2 AU in 3.8×106 years. The planetary embryo is massive enough to start a rapid gas accretion and forms a gas giant planet.  相似文献   

7.
8.
Orbital resonances may have played an important role in determining the locations where the planetesimal swarm eventually accreted into full-size planets. Several pairs of planets do indeed have commensurable orbital periods at present, but the case for control of planet formation by resonances is weakened by the fact that many pairs are not commensurable and that those which are do not necessarily exist at the strongest resonances. However, the mass loss and redistribution that occurred in the early solar system evolution can substantially alter the positions of planets and planetary embryos within the swarm. A cascaded resonance structure is hypothesized where planetesimal growth was accelerated at 2:1 interior and 1:2 exterior resonances with an early-formed Jupiter producing runaway growth of planetary embryos. These embryos produce their own resonances which, in turn, lead to additional embryos in a process that successively propagates inward and outward to generate a resonant configuration of embryos. In this manner, the early presence of Jupiter imposed a harmonic structure on the accumulating planetesimal swarm. For an accretion disk with surface density obeying a power law of index ?1.2 the positions of the planetary embryos can be moved into a reasonably good agreement with most of the present planetary positions that is as good as that given by the Titius-Bode law.  相似文献   

9.
P. Thébault  F. Marzari 《Icarus》2006,183(1):193-206
We investigate classical planetesimal accretion in a binary star system of separation ab?50 AU by numerical simulations, with particular focus on the region at a distance of 1 AU from the primary. The planetesimals orbit the primary, are perturbed by the companion and are in addition subjected to a gas drag force. We concentrate on the problem of relative velocities Δv among planetesimals of different sizes. For various stellar mass ratios and binary orbital parameters we determine regions where Δv exceed planetesimal escape velocities vesc (thus preventing runaway accretion) or even the threshold velocity vero for which erosion dominates accretion. Gaseous friction has two crucial effects on the velocity distribution: it damps secular perturbations by forcing periastron alignment of orbits, but at the same time the size-dependence of this orbital alignment induces a significant Δv increase between bodies of different sizes. This differential phasing effect proves very efficient and almost always increases Δv to values preventing runaway accretion, except in a narrow eb?0 domain. The erosion threshold Δv>vero is reached in a wide (ab,eb) space for small <10-km planetesimals, but in a much more limited region for bigger ?50-km objects. In the intermediate vesc<Δv<vero domain, a possible growth mode would be the type II runaway growth identified by Kortenkamp et al. [Kortenkamp, S., Wetherill, G., Inaba, S., 2001. Science 293, 1127-1129].  相似文献   

10.
G.P. Horedt 《Icarus》1985,64(3):448-470
We derive first-order differential equations for the late stages of planetary accretion (planetesimal mass >1013 g). The effect of gravitational encounters, energy exchange, collisions, and gas drag has been included. Two simple models are discussed, namely, (i) when all planetesimals have the same mass and (ii) when there is one large planetesimal and numerous small planetesmals. Gravitational two-body encounters are modeled according to Chandrasekhar's classical theory from stellar dynamics. It is shown that the velocity increase due to mutual encounters can be modeled according to the simple theory of random flights. We find analytical equations for the average velocity decrease due to collisions. Gas drag, if present, is modeled in averaged form up to the first order in the eccentricities and inclinations of the planetesimals. Characteristic time scales for the formation of the terrestrial planets are found for the most favorable models to be of order 108 year. The calculated mass of rock and ice of the giant planets is too low as compared to the observed one. This difficulty of our model could be overcome by assuming a several times larger surface density, an enlarged accretion cross section, and gas accretion during the final stages of accretion of the solid cores of the giant planets. Analytical and numerical results are presebted, the evolutionary tracks showing satisfactory agreement with observations for some models.  相似文献   

11.
The binary star 55 Cancri harbors at least five giant planets. The discovery of a possible dust disk around the primary of the system was announced in 1998 although it was later dismissed as an observational artifact induced by the presence of three background galaxies. However, the possible existence of an asteroid belt beyond 6 AU from the primary could not be excluded. The actual properties of a hypothetical outer asteroid belt around 55 Cancri A are likely to be the result of the gravitational influence of the outermost planets and gas drag during the late stages of the formation of the planetary system. Gaseous drag within a protoplanetary disk in a multiplanet context can induce resonant capture of solid material rather easily, triggering the formation of asteroid belts similar to our own transneptunian belt. In this paper we investigate this scenario using numerical simulations within the framework of the planar restricted four-body problem to find possible stable debris locations or additional planets around 55 Cancri A. Our results indicate that, beyond 55 Cancri d, only the 1:2 and 1:3 mean-motion resonances may be possible although the details of gas drag-induced resonant trapping depend strongly on the size of the particles, with larger particles being preferentially trapped farther away from the host star. For a primary of mass 0.94 M and i=53° we find solid particles submitted to confined chaos at 10.14 and 13.22 AU with average eccentricities 0.14 and 0.20, respectively. The argument of pericentre of the trapped particles is found to librate around π/2 with the pericentres of the two resonant structures nearly aligned. The resonance responsible for the inner ring effectively halts the migration of the particles. The outer structure resembles a rosette or separatrix orbit. Our calculations suggest that hypothetical planets or asteroid belts in these locations would be, in principle, dynamically stable.  相似文献   

12.
We have made numerical experiments of the collisional and gravitational interaction of a planetesimal swarm in the early Solar System. In particular we study the dynamical evolution of an initial population of kilometer-size planetesimals subject to collisions (accretion, rebound, cratering, and catastrophic fragmentation). This study is based on a Monte-Carlo statistical method and provides the mass and velocity distributions of the planetesimal swarm as a function of time as well as their distribution in heliocentric distance. Several experiments have been performed and three of them are presented here. They simulate the accretional growth of numerous planetesimals in the absence (or presence) of gaseous drag, with (or without) one larger embryo among them, and with (or without) a size gradient. The results show that (i) for a population of planetesimals submitted to a negative gradient in size as the heliocentric distance increases, the outer planetesimals spiral toward the Sun faster than inner ones, leading after some time to an accumulation of bodies inside the cloud which allows the formation of an embryo; (ii) the growth of one embryo among a population of planetesimals is accelerated by the presence of gas and is warranted as long as its feeding zone is fed by the inward flow of planetesimals due to gas drag. These results offer some complementary new insights in the understanding of the accretional formation of 4–5 terrestrial planets instead of the numerous Moon-size planets generally found in numerical experiments.  相似文献   

13.
Orbital resonances tend to force bodies into noncircular orbits. If a body is also under the influence of an eccentricity-reducing medium, it will experience a secular change in semimajor axis which may be positive or negative depending on whether its orbit is exterior or interior to that of the perturbing body. Thus a dissipative medium can promote either a loss or a gain in orbital energy. This process may explain the resonant structure of the asteroid belt and of Saturn's rings. For reasonable early solar system parameters, it would clear a gap near the 2:1 resonance with Jupiter on a time scale of a few thousand years; the gap width would be comparable to the Kirkwood gap presently at the location in the asteroid belt. Similarly, a gap comparable in width to Cassini's division would be cleared in Saturn's rings at the 2:1 resonance with Mimas in ~106 yr. Most of the material from the gap would be deposited at the outer edge of ring B. The process would also affect the radial distribution of preplanetary material. Moreover, it provides an explanation for the large amplitude of the Titan-Hyperion libration. Consideration of the effects of dissipation on orbits near the stable L4 and L5 points of the restricted three-body problem indicates that energy loss causes particles to move away from these points. This results explains the large amplitude of Trojan asteroids about these points and the possible capture of Trojan into orbit about Jupiter.  相似文献   

14.
Both the Poynting-Robertson drag and resonant orbits appear to be very important for the motion of small grains in the early solar system. While orbital resonances are very often stable and tend to force bodies into noncircular orbits, the Poynting-Robertson drag produces secular variations in the semimajor axis and tends to circularize the orbits. We study numerically the competition between the Poynting-Robertson drag and the gravitational interaction of grains with Jupiter near the 2/1 resonance. Computations are based on the plane-restricted problem. Numerical investigations show that the grains always cross the resonance region without any oscillation, except in the special case where the grains were initially inside the resonance. In both cases the variations of the osculating elements exhibit a drastic step, which can be explained by Greenberg's and Schubart's theories.  相似文献   

15.
Compared with the other terrestrial planets, Mercury has anomalously low mass and high iron content. Equilibrium condensation and inhomogeneous accretional models are not compatible with these properties, unless the solar nebula's thermal structure and history meet stringent conditions. Also, such models predict a composition which does not allow a presently molten core. It appears that most of the solid matter which originally condensed in Mercury's zone has been removed. The planet's composition may be explained if the removal process was only slightly more effective for silicates than for iron. It is proposed that planetesimal orbits in the inner solar nebula decayed because of gas drag. This process is a natural consequence of the non-Keplerian rotation of a centrally condensed nebula. A simple quantitative model shows good agreement with the observed mass distribution of the terrestrial planets. The rate of orbital decay is slower for larger and/or denser bodies, because of their smaller area-to-mass ratios. With plausible assumptions as to planetesimal sizes and compositions, this process can produce fractionation of the sense required to produce an iron-rich planet. Cosmogonical implications are discussed.  相似文献   

16.
Resonance occupation of trans-neptunian objects (TNOs) in the scattered disk (>48 AU) was investigated by integrating the orbits of 85 observed members for 4 Gyr. Twenty seven TNOs were locked in the 9:4, 16:7, 7:3, 12:5, 5:2, 8:3, 3:1, 4:1, 11:2, and 27:4 resonances. We then explored mechanisms for the origin of the resonant structure in the scattered disk, in particular the long-term 9:4, 5:2, and 8:3 resonant TNOs (median 4 Gyr), by performing large scale simulations involving Neptune scattering and planetary migration over an initially excited planetesimals disk (wide range of eccentricities and inclinations). To explain the formation of Gyr-resident populations in such distant resonances, our results suggest the existence of a primordial planetesimal disk of at least 45-50 AU radius that suffered a dynamical perturbation leading to 0.1-0.3 or greater eccentricities and a range of inclinations up to ∼20° during early stages of the Solar System history, before planetary migration.  相似文献   

17.
Some natural satellites may have been captured due to the gas drag they experienced in passing through primordial circumplanetary nebulas. This paper models such an encounter and derives the testable parameters from the known properties of current solar system objects and Bodenheimer's (1977, Icarus 31) model of the earliest phases of Jupiter's evolution. We propose that the clusters of prograde and retrograde irregular satellites of Jupiter originated when two parent bodies were decelerated and fragmented as they passed through an extended primordial Jovian nebula. Fragmentation occured because the gas dynamic pressure exceeded the parent bodies' strengths. These events must have occurred only shortly before the primordial nebula experienced hydrodynamical collapse so that subsequently the fragments underwent only limited orbital evolution. Because self-gravity exceeded the relative drag force, the fragments initially remained together, only to be dispersed at a later time by a collision with a stray body. Predictions of this hypothesis, such as orbital distance of the irregular satellites and size of the parent bodies, are found to be consistent with the observed properties of Jupiter's irregular satellites. In addition nebular drag at a later time may have caused the inner three Galilean satellites to undergo a modest amount of orbital evolution, accounting for their present orbital resonance. Gas drag capture of Saturn's Phoebe and Iapetus and Neptune's Nereid and Triton may also be possible. Reasonable differences in properties could explain why these satellites, in contrast to the Jovian ones, did not fracture upon capture. The current irregular satellites represent only a tiny fraction of the bodies captured by primordial nebulas. The dominant fraction would have spiraled into the center of the nebula as a result of continued gas drag and thus offer one source for the heavy element cores of the outer planets. If one is willing to postulate the presence of a massive gaseous nebula around primordial Mars, then gas drag capture could account for the origin of the Martian moons. We hypothesize that a single parent body was captured in a region of the nebula where the gas velocity approached the Keplerian value, that it fragmented upon deceleration into at least two bodies, Phobos and Deimos, and that continued nebular drag led to the low eccentricity and inclination that characterize the satellites' current orbits. Following the dissipation of this nebula, the more massive Phobos tidally evolved to its current position.  相似文献   

18.
A hypothesis is considered in which the 36Ar found on Venus is of solar origin. This possibility is quantitatively discussed within the framework of present theories of planetary accumulation by sweep up of planetesimals under gas-free conditions. Solar wind implantation of 36Ar would take place by irradiation of accumulating material during the first ≈105 years of planetary growth, provided that the flux of solar wind was enhanced by a factor of ≈100 at that time. Enrichment of Venus in implanted gas would be a consequence of the irradiated material being initially confined to the innermost edge of the radially opaque circusolar planetesimal disk predicted by these theories. The observed atmospheric data require a Ne/Ar fractionation by a factor of ≈100 during the planetesimal stage. It is also necessary that there be very little mixing of irradiated planetesimals from the inner edge of disk to the distance (≈1 AU) at which the Earth formed. The hypothesis can be tested by measurement of the abundance of Kr and Xe in the Venus atmosphere. Venera data indicate a terrestrial 36Ar/Kr ratio, in disagreement with the solar wind hypothesis. In contrast, the Pioneer experiments find a lower limit to this ratio, well above the terrestrial value, that is compatible with the hypothesis. These experiments also show that Venus' 36Ar/Xe ratio does not correspond to the so-called “planetary” trapped inert gas composition. The inert of Venus could be related to result of admixture of gas with solar composition. The inert gas on Venus could be related to that found in enstatite chondrites.  相似文献   

19.
Planetesimals orbiting a protostar in a circumstellar disk are affected by gravitational interaction among themselves and by gas drag force due to disk gas. Within the Kyoto model of planetesimal accretion, the migration rate is interpreted as the inverse of the planetary formation time scale. Here, we study time scales of gravitational interaction and gas drag force and their influence on planetesimal migration in detail. Evaluating observations of 86 T Tauri stars (Beckwithet al., 1990), we find the mean radial temperature profile of circumstellar disks. The disk mass is taken to be 0.01M in accordance with minimum mass models and observed T Tauri disks. The time scale of gravitational interaction between planetesimals is studied analogously to Chandrasekhar's stellar dynamics. Hence, Chandrasekhar's coefficient , defined as the fraction between the mean separation of planetesimals and the impact parameter, plays an important role in determining the migration rate. We find ln to lie between 5 and 10 within the protosolar disk. Our result is that, at the stage of disk evolution considered here, gas drag force affects the radial migration of planetesimals by a few orders of magnitude more than gravitational interaction.Paper presented at the Conference on Planetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

20.
The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is examined. Gravitational instability in a dust layer and collisional accretion are considered as possible mechanisms of planetesimal formation. Non-Keplerian rotation of the nebula results in shear between the gas and a dust layer. This shear produces turbulence within the layer which inhibits gravitational instability, unless the mean particle size exceeds a critical value, ~1 cm at 1 AU. The size requirement is less stringent at larger heliocentric distances, suggesting a possible difference in planetesimal formation mechanisms between the inner and outer nebula. Coagulation of grains during settling is expected in the solar nebula environment. Van der Waals forces appear adequate to produce centimeter-sized aggregates. Growth is primarily due to sweepup of small particles by larger ones due to size-dependent settling velocities. A numerical model for computing simultaneous coagulation and settling is described. Relative velocities are determined by gas drag and the non-Keplerian rotation of the nebula. The settling is very nonhomologous. Most of the solid matter reaches the central plane as centimeter-sized aggregates in a few times 103 revolutions, but some remains suspended in the form of fine dust. Drag-induced relative velocities result in collisions. The growth of bodies in the central plane is initially rapid. After sizes reach ~103 cm, relative velocities decrease and the growth rate declines. Gas drag rapidly damps the out-of-plane motions of these intermediate-sized bodies. They settle into a thin layer which is subject to gravitational instability. Kilometer-sized planetesimals are formed by this composite process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号