首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ABSTRACT

Natural Ariake clays are characterized by high sensitivity. In this study, the mechanism and the factors controlling undrained shear strengths of both undisturbed and remolded Ariake clays are discussed. A series of unconfined compressive tests were performed on undisturbed samples of natural Ariake clays. The remolded undrained shear strength is predicted using a quantitative expression derived from extensive data of remolded undrained shear strength for a number of soils compiled from resources in the literature. The sensitivity of natural Ariake clays derived from the ratio of half of unconfined compressive strength for undisturbed samples to remolded undrained shear strength is found to be affected by both natural water content and normalized water content that is defined as the ratio of natural water content to liquid limit. The smaller the natural water content, the higher the sensitivity is at the same normalized water content. At the same natural water content, the larger the normalized water content, the higher the sensitivity is.  相似文献   

2.
Undrained shear strength is a fundamental parameter for estimating the stability of soft soils. This study explores the relationship between undrained shear strength, void ratio, and shear wave velocity for saturated and normally consolidated clay specimens. The undrained shear strength void ratio-shear wave velocity relationship was correlated to empirically determined parameters of selected marine clay specimens. To verify the proposed relationship between undrained shear strength and shear wave velocity, in situ flat dilatometer tests were used for determining the undrained shear strength, and downhole tests were used to assess the shear wave velocity on a natural soil deposit at various depths. The undrained shear strength estimated from the in situ shear wave velocities was compared to the undrained shear strength obtained in the field. The results show that the inferred undrained shear strength yield similar values and follow the same trends as the in situ undrained shear strength data. This method using shear wave velocity can help to nondestructively estimate the undrained shear strength of soft soils in the field and be used in both on-shore and off-shore geotechnical engineering projects.  相似文献   

3.
Natural Ariake clays are characterized by high sensitivity. In this study, the mechanism and the factors controlling undrained shear strengths of both undisturbed and remolded Ariake clays are discussed. A series of unconfined compressive tests were performed on undisturbed samples of natural Ariake clays. The remolded undrained shear strength is predicted using a quantitative expression derived from extensive data of remolded undrained shear strength for a number of soils compiled from resources in the literature. The sensitivity of natural Ariake clays derived from the ratio of half of unconfined compressive strength for undisturbed samples to remolded undrained shear strength is found to be affected by both natural water content and normalized water content that is defined as the ratio of natural water content to liquid limit. The smaller the natural water content, the higher the sensitivity is at the same normalized water content. At the same natural water content, the larger the normalized water content, the higher the sensitivity is.  相似文献   

4.
卞夏  钱森  丁建文 《海洋工程》2015,29(5):745-755
The observations on compressibility of reconstituted clays show that the compression line with a higher initial water content lies above the compression line with a lower initial water content for a given clay. Hence there exists additional void ratio due to initial water contents among virgin compression lines (VCLs) of reconstituted clays. In this paper, the difference in void ratio caused by different initial water contents is investigated based on the empirical equation proposed by Liu and Carter (2000) for describing the differential void ratio at the same stress between natural and reconstituted clays. The mechanism of compressibility of reconstituted clays, when the stress level is larger than the remolded yield stress, is also discussed.  相似文献   

5.
Quantitative laboratory studies on the structural behavior of natural intact marine clays require a large number of identical natural samples leading to an expensive and challenging task. This study proposes a simple method to reconstruct an artificial structured marine clay as the state of its natural intact clay at both macro and micro levels. For this purpose, the Shanghai marine clay is selected and mixed with low cement contents (1–6%). The clay-cement slurry is mixed in a container with the ice-covered sides at a low temperature about 0 ± 2 °C to postpone the hydration reactions until consolidation began. The purpose of adding cement is to generate the inter-particle bonding and structure in reconstituted samples. Initially, the reconstituted samples are consolidated under the in situ stress of 98 kPa and then under the pre-consolidation pressure of 50 kPa. Mechanical characteristics such as compression index, yield stress, unconfined compression strength, shear strength ratio, and the stress paths from triaxial tests are compared with natural intact clay accordingly. Scanning electron microscope and mercury intrusion porosimetry analyses are also performed to analyze the microstructure of clays for comparison. Furthermore, the proposed method is also examined by using natural intact marine clays of different locations and characteristics.  相似文献   

6.
Consolidation and creep behaviors of two typical marine clays in China   总被引:2,自引:1,他引:1  
This paper presents an experimental investigation into the deformation characteristics of two typical marine clays obtained from Dalian and Shanghai, respectively, in China. Three kinds of laboratory tests, i.e. conventional oedometer tests, one-dimensional and triaxial creep tests were carried out. The results obtained from consolidation tests demonstrate linear v e ? log? relationships for Shanghai clay at normally consolidated state, while partly or even global non-linearrelationships for Dalian clay. The compression index c C for both clays follows the correlation of Cc=0.009(WL-10)where WL is the liquid limit of soil. The relationship between v log Kv ( Kv is the hydraulic conductivity of soil) and voidratio e is generally linear and the hydraulic conductivity change index kv C can be described by their initial void ratio forboth clays. The secondary compressibility of Dalian clay lies in medium to high range and is higher than that of Shanghaiclay which lies in the range of low to medium. Furthermore, based on drained triaxial creep tests, the stress-strain-timerelationships following Mesri's creep equation have been developed for Dalian and Shanghai clays which can predict thelong-term deformation of both clays reasonably well.  相似文献   

7.
Abstract

In the present scenario, with much focus on sustainable development worldwide, Microbially Induced Calcite Precipitation (MICP) is a promising biological soil improvement technology. However, only very limited research is reported on the effectiveness of this technique in marine clays. This paper presents the salient features of an experimental study conducted on two typical marine clays stabilised by MICP. Effectiveness of the technique was evaluated through a series of one-dimensional consolidation tests, unconfined compression tests, and index property determinations. It is found that biostimulation approach is not effective in marine clay; bio-augmentation is needed for soil improvement. Bio-augmentation results in the reduction of liquid limit and plasticity index to about 29% and 47%, respectively for the marine clays. A comparable improvement in volume change behaviour is also observed. There is a marked increase in undrained shear strength, upto about 148%, of MICP treated marine clays at toughness limit water content. Curing is also found to have a significant role in soil improvement. The observed transition in the nature of the tested marine clays from that of fat clay to elastic silt suggests the potential of the proposed approach. An empirical equation is also proposed to predict compression index of MICP treated marine clays.  相似文献   

8.
This study investigated how leaching affects compressibility behavior of marine clay and its strain rate dependency based on laboratory tests using three pairs of specimens. Each pair of specimens consisted of leached and unleached samples with identical geotechnical properties except soil salinity. The behavior characteristics of the leached and unleached specimens were evaluated using several series of constant rate-of-strain (CRS) tests with differing strain rates. The results revealed that the compressibility of leached clay increased as its salinity decreased. However, void ratio, Atterberg limits, and preconsolidation pressure in leached samples were lower than those in unleached clay. The increased compressibility and decreased preconsolidation pressure may be induced from a weakening of the interparticle bonds in the leached soil skeleton. The CRS test results with differing strain rates revealed that higher strain rates corresponded with higher levels of effective stress and higher apparent preconsolidation pressure in both leached and unleached clays.  相似文献   

9.
This article presents a laboratory study of static behavior of silty-sand soils. The objective of this laboratory investigation is to study the effect of initial confining pressures and fines content on the undrained shear strength (known as liquefaction resistance) response, pore pressure, and hydraulic conductivity of sand–silt mixtures. The triaxial tests were conducted on reconstituted saturated silty-sand samples at initial relative density Dr = 15% with fines content ranging from 0 to 50%. All the samples were subjected to a range of initial confining pressures (50, 100, and 200 kPa). The obtained results indicate that the presence of low plastic fines in sand–silt mixture leads to a more compressible soil fabric, and consequently to a significant loss in the soil resistance to liquefaction. The evaluation of the data indicates that the undrained shear strength can be correlated to fines content (Fc), inter-granular void ratio (eg), and excess of pore pressure (Δu). The undrained shear strength decreases with the decrease of saturated hydraulic conductivity and the increase of fines content for all confining pressures under consideration. There is a relatively high degree of correlation between the peak shear strength (qpeak) and the logarithm of the saturated hydraulic conductivity (ksat) for all confining pressures.  相似文献   

10.
11.
It has been well documented that natural marine Ariake clays are sensitive clays. In this study, extensive data of marine Ariake clays are obtained to investigate the gravitational compression behavior for sensitive clays. Analysis results indicate that the compression behavior of remolded Ariake clays is not different from that of other remolded/reconstituted soils. But natural Ariake clays do not follow the gravitational compression pattern reported by Skempton (1970) for natural sedimentary soils. At a given value of effective overburden pressure, the void ratios of natural Ariake clays are almost independent of liquid limits. Most natural Ariake clays lie above the sedimentation compression line proposed by Burland (1990). When the liquid limit is larger than 90% and the ratio of natural water content over liquid limit ranges 0.8-1.1, the natural Ariake clays lie around the sedimentation compression line. In addition, the natural Ariake clay with higher value of the ratio of natural water content over liquid limit lies above the natural Ariake clay with lower value of the ratio of natural water content over liquid limit. Salt removal is the most probable cause for such a phenomenon.  相似文献   

12.
The results of one-dimensional compression tests conducted on undisturbed specimens of Jiangsu soft marine clay is presented. Because of its high in situ void ratios and natural water content, Jiangsu soft marine clay displays high values of both the virgin compression index, Cc, and the secondary compression coefficient, Cα. The laboratory data indicates that the value of the ratio Cα/Cc for Jiangsu soft marine clay is constant. However, neither Cα nor Cc are constant: they both depend upon the natural water content (or void ratio) and thus are also dependent on the deformation (or compression) of Jiangsu soft marine clay. Settlement analyses show that the secondary settlement of Jiangsu soft marine clay is a significant component of the field settlement. The concept of a constant value for Cα/Cc is used to predict the secondary settlement of a surcharged embankment founded upon Jiangsu soft marine clay. The predictions are in agreement with the limited post-construction field measurements of the embankment settlement.  相似文献   

13.
Marine clay deposits are encountered in the coastal regions of the world. They are soft in consistency with low shear strength and are highly compressible. The properties of these deposits are complex and diverse, and they mainly depend on the minerals present and microstructural arrangement of constituent particles. In the present investigation, the physico-chemical properties of the sediment samples obtained from marine deposits of east and west metropolitan coastal cities of India are discussed, and the test results obtained are compared with the synthetic samples such as bentonite and kaolinite. Mineralogical and fabric studies were carried out using scanning electron microscopy and x-ray diffraction techniques. Several consolidation and strength tests were carried out to study the engineering behaviour of these deposits. The strength and compressibility (Cc) values of these deposits varies from 27 to 45 kN/m2 and 0.37 to 0.81 respectively. XRD studies confirm the presence of highly compressible clay minerals such as smectite, vermiculite, chlorite and traces of the low swelling mineral, kaolinite. The fabric studies indicate that the constituent particles were arranged in an open network, or flocculated structure resulting in a high void ratio.  相似文献   

14.
On Physical and Mechanical Behavior of Natural Marine Intermediate Deposits   总被引:4,自引:1,他引:4  
Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the nattwal marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same miles of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consohdated compression shear tests with simulated insitu confined pressure give results much better than those of uncomfined compression shear tests.  相似文献   

15.
The use of the piezocone penetration test (CPTU) in a geotechnical site investigation offers direct field measurement on stratigraphy and soil behavior. Compared with some traditional investigation methods, such as drilling, sampling and field inspecting method or laboratory test procedures, CPTU can greatly accelerate the field work and hereby reduce corresponding operation cost. The undrained shear strength is a key parameter in estimation of the stability of natural slopes and deformation of embankments in soft clays. This paper provides the measurements of in situ CPTU, field vane testing and laboratory undrained triaxial testing of Lianyungang marine clay in Jiangsu province of China. Based on the literature review of previous interpretation methods, this paper presents a comparison of field vane testing measurements to CPTU interpretation results. The undrained shear strength values from both the field vane tests and cone penetration resistances are lowest at the mid-depths of the marine clay layers, and the excess pore water pressures are highest at the mid-depths of the marine clay layers, indicating that the marine clay layer is underconsolidated.  相似文献   

16.
This study presents comprehensive geotechnical data of the natural marine sediments cored from the hydrate occurrence regions during the Ulleung Basin Gas Hydrate Expedition 1 (UBGH1), East Sea, offshore Korea in 2007. Geotechnical soil index properties of the Ulleung Basin sediments, including grain size distribution, porosity, water content, Atterberg limits, specific gravity, and specific surface area, were experimentally determined. These soil index properties were correlated to geotechnical engineering parameters (e.g., shear strength and friction angle) by using well-known empirical relationships. By performing standard consolidation tests on both undisturbed specimens (as recovered from the original core liner after hydrate dissociation) and remolded specimens, stress-dependent mechanical and hydraulic properties (e.g., compressibility and hydraulic conductivity) were measured. The experimental results provide important engineering parameters, and demonstrate the effect of hydrate presence and consequential dissociation to index properties, engineering parameters, and innate sediment structures.  相似文献   

17.
《Ocean Engineering》1999,26(5):463-483
Marine clay deposits are encountered in the coastal regions of the world. They are soft in consistency with low shear strength and are highly compressible. The properties of these deposits are complex and diverse, and they mainly depend on the minerals present and microstructural arrangement of constituent particles. In the present investigation, the physico-chemical properties of the sediment samples obtained from marine deposits of east and west metropolitan coastal cities of India are discussed, and the test results obtained are compared with the synthetic samples such as bentonite and kaolinite. Mineralogical and fabric studies were carried out using scanning electron microscopy and x-ray diffraction techniques. Several consolidation and strength tests were carried out to study the engineering behaviour of these deposits. The strength and compressibility (Cc) values of these deposits varies from 27 to 45 kN/m2 and 0.37 to 0.81 respectively. XRD studies confirm the presence of highly compressible clay minerals such as smectite, vermiculite, chlorite and traces of the low swelling mineral, kaolinite. The fabric studies indicate that the constituent particles were arranged in an open network, or flocculated structure resulting in a high void ratio.  相似文献   

18.
Abstract

Cement soil mixing piles are an effective treatment method for marine soft clay. To investigate the static and dynamic characteristics of the composite soil with cemented soil core, a series of experiments are carried out by using the cyclic simple shear test. The result shows that, the static shear strain showed strain hardening, cemented soil core can improve static shear strength of composite soil, vertical stress can enlarge reinforcement of cemented soil core. The tendency of strain development of composite soil with different area replacement ratios under cyclic loading is the same as that of pure clay, existing critical cyclic stress ratios corresponding to different area replacement ratios. In addition, improving area replacement ratio can increase cyclic strength. At same time, adding of cemented soil core does not change shape of hysteresis curve compared with it for clay either. Moreover, cemented soil core can also obstruct stiffness softening. Through regression analysis of the experimental data, relationship between cyclic number and soil softening index is proved to be linear. The results can give a reference for the dynamic characters of the marine soft clay foundation with cement soil mixing piles.  相似文献   

19.
浅层沉积物不排水抗剪强度(Su)是深水作业的关键参数之一。为了获取南海神狐海域首次海域天然气水合物试采区W18-19框体的基本工程地质特征,试采工程准备阶段开展了原位孔压静力触探测试(CPTU)及大量的室内实验。本文将主要基于CPTU计算不排水抗剪强度的基本模型,采用微型十字板、电动十字板、袖珍贯入仪及不固结不排水三轴实验,确定该区域不排水抗剪强度的基本模式,并提出适用于南海神狐钙质黏土层的不排水抗剪强度纵向分布规律计算模型,对该区域水合物上覆层的不排水抗剪强度进行预测。 结果表明,基于总锥端阻力、有效锥端阻力、超孔隙压力的模型系数分为13.8、4.2、14.4。综合考虑地层压实效应和含气情况,本文提出的分段函数预测模型与室内结果的一致性较好,可用于工程设计阶段进行工区不排水抗剪强度纵向分布规律的预测。另外,基于有效锥端阻力的不排水抗剪强度经验模型适应于浅层极软-较硬压实的钙质粘土层,基于超孔隙压力的不排水抗剪强度模型适用于较硬-坚硬的不含气层,而基于总锥端阻力的不排水抗剪强度计算模型则适用于坚硬含气的钙质黏土层。本文提出的分段函数模型有效的提高了经验模型在南海神狐水合物赋存区的适用性,计算结果可为工程安全评价提供支撑。  相似文献   

20.
The results of five centrifuge tests of a stiff circular model platform on overconsolidated undisturbed Drammen clay are reported from Manchester University together with predictions computed at the Norwegian Geotechnical Institute. Towards failure the models developed high shear strain and softening local to the base, accompanied by a permanent settlement or shakedown. A total stress transfer from edge to centre caused a rapid increase of excess pore pressure under the centre, having a high vertical gradient. These features, and failure values which decreased with increase in eccentricity of loading, conformed with previous observations on reconstituted clays. Comparison of observations with predictions highlights the sensitivity of the analytical method to the fineness of the finite element mesh just below the base. The predictions also indicated a sensitivity of the failure load to the degree of overconsolidation associated with a given undrained shear strength. The elastic type analysis did not predict the degree of shakedown which was associated with plastic displacement of clay from just under the base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号