首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The spatio-temporal variations of the water budget components in the Amazon region are investigated by using a combination of hydrometeorological observations and moisture fluxes derived from the NCEP/NCAR reanalyses, for the period 1970–1999. The key new finding of this study identifies the major differences in the water balance characteristics and variability between the northern and southern parts of the basin. Our results show that there is a seasonality and interannual variability of the water balance that varies across the basin. At interannual time scales, anomalies in the water balance components in the northern Amazon region show relatively stronger links with tropical Pacific interannual variability. Over the entire region, precipitation exceeds evaporation and the basin acts as a sink of moisture (P>E). However, on some occasions the basin can act as a source for moisture (P<E) under extreme conditions, such as those related to deficient rainfall in northern Amazonia during the strong El Niño of 1983. Our estimates of the Amazon regions water balance do not show a closure of the budget, with an average imbalance of almost 50%, suggesting that some of the moisture that converges in the Amazon region is not accounted for. The imbalance is larger over the southern Amazon region than over the northern region, and it also exhibits interannual variability. Large uncertainties are detected in the evaporation and moisture-convergence fields derived from the reanalyses, and in the case of evaporation it can be as large as 10–20% when compared with the few field observations across the basin. Observed precipitation fields derived from station data and from grid-box products also show some discrepancies due to sampling problems and interpolation techniques. The streamflow observed at the mouth of the river is obtained after corrections on the series observed taken at a gauging site almost 200 km inland. However, variability in the evaporation, moisture convergence, and observed rainfall and runoff matches quite well.  相似文献   

2.
 Global soil moisture data of high quality and resolution are not available by direct observation, but are useful as boundary and initial conditions in comprehensive climate models. In the framework of the GSWP (Global Soil Wetness Project), the ISBA land-surface scheme of Météo-France has been forced with meteorological observations and analyses in order to study the feasibility of producing a global soil wetness climatology at a 1°×1° horizontal resolution. A control experiment has been performed from January 1987 to December 1988, using the ISLSCP Initiative I boundary conditions. The annual mean, the standard deviation and the normalised annual harmonic of the hydrologic fields have been computed from the 1987 monthly results. The global maps which are presented summarise the surface hydrologic budget and its annual cycle. The soil wetness index and snow cover distributions have been compared respectively to the results of the ECMWF reanalysis and to satellite and in situ observations. The simulated runoff has been validated against a river flow climatology, suggesting a possible underestimation over some large river basins. Besides the control run, other simulations have been performed in order to study the sensitivity of the hydrologic budget to changes in the surface parameters, the precipitation forcing and the runoff scheme. Such modifications have a significant impact on the partition of total precipitation into evaporation and runoff. The sensitivity of the results suggests that soil moisture remains one of the most difficult climatological parameters to model and that any computed soil wetness climatology must be considered with great caution. Received: 3 January 1997 / Accepted: 19 August 1987  相似文献   

3.
Treatment of frozen soil and snow cover in the land surface model SEWAB   总被引:3,自引:0,他引:3  
Summary  The land surface model SEWAB (Surface Energy and Water Balance) is designed to be coupled to both, atmospheric and hydrological models. Its application in mid and high latitudes requires the inclusion of freezing and thawing processes within the soil and the accumulation and ablation of a snow cover. These winter processes are parameterised with a minimum number of empirical formulations in order to assure reasonable computation times for an application in climate and sensitivity studies yet accounting for all important processes. Meteorological forcing data and measurements of snow depth, soil temperature and liquid soil water content at two locations in the mid-west of North America are used to test the model. Generally the simulated snow depth matches the measurements, remaining differences in snow depth can be explained by uncertainties in snow density, blowing snow and errors in precipitation measurements. The simulated soil temperature and liquid soil water content compare well with the measurements, showing the isolating effect of the snow cover. Received August 25, 2000 Revised January 19, 2001  相似文献   

4.
Guiling Wang 《Climate Dynamics》2005,25(7-8):739-753
This study examines the impact of greenhouse gas warming on soil moisture based on predictions of 15 global climate models by comparing the after-stabilization climate in the SRESA1b experiment with the pre-industrial control climate. The models are consistent in predicting summer dryness and winter wetness in only part of the northern middle and high latitudes. Slightly over half of the models predict year-round wetness in central Eurasia and/or year-round dryness in Siberia and mid-latitude Northeast Asia. One explanation is offered that relates such lack of seasonality to the carryover effect of soil moisture storage from season to season. In the tropics and subtropics, a decrease of soil moisture is the dominant response. The models are especially consistent in predicting drier soil over the southwest North America, Central America, the Mediterranean, Australia, and the South Africa in all seasons, and over much of the Amazon and West Africa in the June–July–August (JJA) season and the Asian monsoon region in the December–January–February (DJF) season. Since the only major areas of future wetness predicted with a high level of model consistency are part of the northern middle and high latitudes during the non-growing season, it is suggested that greenhouse gas warming will cause a worldwide agricultural drought. Over regions where there is considerable consistency among the analyzed models in predicting the sign of soil moisture changes, there is a wide range of magnitudes of the soil moisture response, indicating a high degree of model dependency in terrestrial hydrological sensitivity. A major part of the inter-model differences in the sensitivity of soil moisture response are attributable to differences in land surface parameterization.  相似文献   

5.
 This study presents the monthly climatology and variability of the historical soviet snow depth data. This data set was developed under the bilateral data exchange agreement between United States of America and the former Union of Soviet Socialist Republics. The original data is for 284 stations for periods varying from 1881 upto 1985. The seasonal cycle of the mean snow depth has been presented both as spatial maps and as averages over key locations. The deepest snow (=80 cms/day) areas are found over Siberia (in Particular over 80′–100 ′E, 55′–70 ′N) during March. Over the course of the annual cycle average snow depth over this region changes dramatically from about 10 cms in October to about 80 cms in March. The variability is presented in the form of spatial maps of standard deviation. To investigate the interaction of snow depth with Indian monsoon rainfall (IMR), lag and lead correlation coefficients are computed. Results reveal that the winter-time snow depth over western Eurasia surrounding Moscow (eastern Eurasia in central Siberia) shows significant negative (positive) relationship with subsequent IMR. Following the monsoon the signs of relationship reverse over both the regions. This correlation structure is indicative of a midlatitude longwave pattern with an anomalous ridge (trough) over Asia during the winter prior to a strong (weak) monsoon. As the time progresses from winter to spring, the coherent areas of significant relationship show southeastward propagation. Empirical orthogonal function analysis of the snow depth reveal that the first mode describes a dipole-type structure with one centre around Moscow and the other over central Siberia, depicting similar pattern as the spatial correlation structure. The decadal-scale IMR variations seem to be more associated with the Northern Hemisphere midlatitude snow depth variations rather than with the tropical ENSO (El Nino Southern Oscillation) variability. Received: 16 March 1998 / Accepted: 24 December 1998  相似文献   

6.
A global monthly climatology of soil moisture and water balance   总被引:4,自引:0,他引:4  
Global monthly climatology of available soil moisture content is derived on a 4° by 5° grid from observed precipitation and air surface temperature by use of a simple water budget model. The governing equations and methods of calculation for deriving these fields, which follow the formulation of Thornthwaite, are first described and the importance of the various assumptions and simplifications of this approach are discussed. The derived global fields are then presented. A comparison of some of the derived fields with other calculations is also made in order to permit an evaluation of the results: For example, our indirect estimate of the river run-off is generally in good agreement with more direct estimates, except for high latitude regions where the freezing of the soil may play an important role.Yale Mintz died on 27 April 1991. This work was carried out jointly over a number of years preceding his death  相似文献   

7.
The water cycle over the Amazon basin is a regulatory mechanism for regional and global climate. The atmospheric moisture evaporated from this basin represents an important source of humidity for itself and for other remote regions. The deforestation rates that this basin has experienced in the past decades have implications for regional atmospheric circulation and water vapor transport. In this study, we analyzed the changes in atmospheric moisture transport towards tropical South America during the period 1961–2010, according to two deforestation scenarios of the Amazon defined by Alves et al. (Theor Appl Climatol 100(3-4):337–350, 2017). These scenarios consider deforested areas of approximately 28% and 38% of the Amazon basin, respectively. The Dynamic Recycling Model is used to track the transport of water vapor from different sources in tropical South America and the surrounding oceans. Our results indicate that under deforestation scenarios in the Amazon basin, continental sources reduce their contributions to northern South America at an annual scale by an average of between 40 and 43% with respect to the baseline state. Our analyses suggest that these changes may be related to alterations in the regional Hadley and Walker cells. Amazon deforestation also induces a strengthening of the cross-equatorial flow that transports atmospheric moisture from the Tropical North Atlantic and the Caribbean Sea to tropical South America during the austral summer. A weakening of the cross-equatorial flow is observed during the boreal summer, reducing moisture transport from the Amazon to latitudes further north. These changes alter the patterns of precipitable water contributions to tropical South America from both continental and oceanic sources. Finally, we observed that deforestation over the Amazon basin increases the frequency of occurrence of longer dry seasons in the central-southern Amazon (by between 29 and 57%), depending on the deforestation scenario considered, as previous studies suggest.  相似文献   

8.
Scenarios indicate that the air temperature will increase in high latitude regions in coming decades, causing the snow covered period to shorten, the growing season to lengthen and soil temperatures to change during the winter, spring and early summer. To evaluate how a warmer climate is likely to alter the snow cover and soil temperature in Scots pine stands of varying ages in northern Sweden, climate scenarios from the Swedish regional climate modelling programme SWECLIM were used to drive a Soil-Vegetation-Atmosphere Transfer (SVAT)-model (COUP). Using the two CO2 emission scenarios A and B in the Hadley centres global climate model, HadleyA and HadleyB, SWECLIM predicts that the annual mean air temperature and precipitation will increase at most 4.8°C and 315 mm, respectively, within a century in the study region. The results of this analysis indicate that a warmer climate will shorten the period of persistent snow pack by 73–93 days, increase the average soil temperature by 0.9–1.5°C at 10 cm depth, advance soil warming by 15–19 days in spring and cause more soil freeze–thaw cycles by 31–38%. The results also predict that the large current variations in snow cover due to variations in tree interception and topography will be enhanced in the coming century, resulting in increased spatial variability in soil temperatures.  相似文献   

9.
The regions where the divergence of vertically integrated water vapor flux, averaged over a season or a year, is positive (negative) are sources (sinks) of moisture for the atmosphere. An aerial river is defined as a stream of strong water vapor flux connecting a source and a sink. Moisture flux, its divergence, and sources and sinks over the tropics of South and Central America and the adjoining Atlantic Ocean are obtained for dry years and for wet years in the Amazon Basin. Results show that the Amazon Basin is a sink region for atmospheric moisture in all seasons and that there are two source regions for the moisture in the basin, one situated in the South Atlantic and the other in the North Atlantic, both located equator-ward of the respective subtropical high-pressure centers. The convergence of moisture increases over the Amazon Basin in austral summer, and at the same time it decreases in the Pacific and Atlantic ITCZs. Box model calculations reveal that the wet years, on the average, present about 55 % more moisture convergence than the dry years in the Amazon Basin. A reduction in the moisture inflow across the eastern and northern boundaries of the basin (at 45°W and at the Equator, respectively) and an increase in the outflow across the southern boundary (at 15°S) lead to dry conditions. The annual mean contribution of moisture convergence to the precipitation over the Amazon Basin is estimated to be 70 %. In the dry years, it lowers to around 50 %. The net convergence of water vapor flux over the basin is a good indicator of the wet or dry condition.  相似文献   

10.
Summary  Within the framework of the European LAPP-project (Land Arctic Physical Processes) and as part of the Danish Research Council’s Polar Programme, studies on water- and surface energy balance in NE Greenland were conducted in 1996 and 1997. Eddy correlation measurements of water vapour and sensible heat fluxes above the three dominant vegetation types: fen, willow snowbed, and heath were conducted for the entire growing season. This was supplemented by measurements of evaporation from snow covered areas and from a small pond. The evapotranspiration was found to be relatively high with the maximum from the fen (≈86 mm per season). For the two other vegetation types the evapotranspiration was less, for heath 61 mm per season, while willow snowbed had evaporation rates on intermediate level. By use of the Penman-Monteith equation it was possible to estimate the altitude dependence of the evapotranspiration and calculate the annual evaporation for the whole area to 80 mm per year. By applying a bucket model the evaporation was found to be in accordance with changes in soil moisture as monitored with TDR. The observed surface water balance was compared to river discharge, which shows a glacio-nival regime with an early spring flow (June), determined by the snow melt in the main valley and an July–August maximum determined by melt on higher plateau areas. When balancing the individual hydrological components an annual deficit of 180 mm was observed, but it was found that this deficit could be reduced by correcting for aerodynamic and altitude effects on the precipitation. Finally some of the possible consequences of a global warming is discussed in relation to the water and energy balance in the high-arctic ecosystem. Received November 1, 1999 Revised May 15, 2000  相似文献   

11.
利用农业气象站观测资料对长江中下游地区1988-2010年遥感土壤湿度进行了验证,并与NCEP和ERA-Interim土壤湿度做了对比分析。研究表明,ECV遥感土壤湿度冬季平均土壤湿度最高,春季和秋季次之,夏季平均土壤湿度最低;这种季节性干湿变化与农业气象站观测资料一致。但是,NCEP和ERA-Interim土壤湿度再分析资料,则夏季平均土壤湿度高,春季和秋季次之,而冬季平均土壤湿度最低;这种季节性变化与ECV遥感土壤湿度和农业气象站观测资料呈反位相。就年际变化而言,ECV遥感土壤湿度与农业气象站观测资料和两套再分析资料均有较高的一致性,并在春季和秋季最高,尤其是在长江以北地区和长江以南洞庭湖、鄱阳湖两大湖区,相关系数达到0.7~0.9;而夏季一致性最低,相关系数仅为0.4左右。在研究时段,ECV土壤湿度在冬季明显增加,在夏季则有明显下降趋势。  相似文献   

12.
江西省旱涝动态监测指标的设计   总被引:1,自引:1,他引:0  
从地面水份平衡原理出发,在分析地面降水承载力和地面水份含量变化特征的基础上,讨论了湿润地区旱涝灾害的形成机制。运用WMO推荐的异常度指标和Bhalme-Mooley湿润度指标的基本原理,设计了一个洪涝灾害的动态监测指标。通过对地面水份含量变化特征方程的简化处理,设计了一个干旱动态监测指标。在实际业务工作中,这一旱涝动态监测指标能较好地反映旱涝灾害的发生、发展和解除过程。  相似文献   

13.
 The effect of a snow cover on sea ice accretion and ablation is estimated based on the ‘zero-layer’ version sea ice model of Semtner, and is examined using a coupled atmosphere-sea ice model including feedbacks and ice dynamics effects. When snow is disregarded in the coupled model the averaged Antarctic sea ice becomes thicker. When only half of the snowfall predicted by the atmospheric model is allowed to land on the ice surface sea ice gets thicker in most of the Weddell and Ross Seas but thinner in East Antarctic in winter, with the average slightly thicker. When twice as much snowfall as predicted by the atmospheric model is assumed to land on the ice surface sea ice also gets much thicker due to the large increase of snow-ice formation. These results indicate the importance of the correct simulation of the snow cover over sea ice and snow-ice formation in the Antarctic. Our results also illustrate the complex feedback effects of the snow cover in global climate models. In this study we have also tested the use of a mean value of 0.16 Wm-1 K-1 instead of 0.31 for the thermal conductivity of snow in the coupled model, based on the most recent observations in the eastern Antarctic and Bellingshausen and Amundsen Seas, and have found that the sea ice distribution changes greatly, with the ice becoming much thinner by about 0.2 m in the Antarctic and about 0.4 m in the Arctic on average. This implies that the magnitude of the thermal conductivity of snow is of considerable importance for the simulation of the sea ice distribution. An appropriate value of the thermal conductivity of snow is as crucial as the depth of the snow layer and the snowfall rate in a sea ice model. The coupled climate models require accurate values of the effective thermal conductivity of snow from observations for validating the simulated sea ice distribution under the present climate conditions. Received: 20 November 1997/Accepted: 27 July 1998  相似文献   

14.
Land surface hydrology (LSH) is a potential source of long-range atmospheric predictability that has received less attention than sea surface temperature (SST). In this study, we carry out ensemble atmospheric simulations driven by observed or climatological SST in which the LSH is either interactive or nudged towards a global monthly re-analysis. The main objective is to evaluate the impact of soil moisture or snow mass anomalies on seasonal climate variability and predictability over the 1986–1995 period. We first analyse the annual cycle of zonal mean potential (perfect model approach) and effective (simulated vs. observed climate) predictability in order to identify the seasons and latitudes where land surface initialization is potentially relevant. Results highlight the influence of soil moisture boundary conditions in the summer mid-latitudes and the role of snow boundary conditions in the northern high latitudes. Then, we focus on the Eurasian continent and we contrast seasons with opposite land surface anomalies. In addition to the nudged experiments, we conduct ensembles of seasonal hindcasts in which the relaxation is switched off at the end of spring or winter in order to evaluate the impact of soil moisture or snow mass initialization. LSH appears as an effective source of surface air temperature and precipitation predictability over Eurasia (as well as North America), at least as important as SST in spring and summer. Cloud feedbacks and large-scale dynamics contribute to amplify the regional temperature response, which is however, mainly found at the lowest model levels and only represents a small fraction of the observed variability in the upper troposphere.  相似文献   

15.
We use a state of the art climate model (CAM3–CLM3) to investigate the sensitivity of surface climate and land surface processes to treatments of snow thermal conductivity. In the first set of experiments, the thermal conductivity of snow at each grid cell is set to that of the underlying soil (SC-SOIL), effectively eliminating any insulation effect. This scenario is compared against a control run (CTRL), where snow thermal conductivity is determined as a prognostic function of snow density. In the second set of experiments, high (SC-HI) and low (SC-LO) thermal conductivity values for snow are prescribed, based on upper and lower observed limits. These two scenarios are used to envelop model sensitivity to the range of realistic observed thermal conductivities. In both sets of experiments, the high conductivity/low insulation cases show increased heat exchange, with anomalous heat fluxes from the soil to the atmosphere during the winter and from the atmosphere to the soil during the summer. The increase in surface heat exchange leads to soil cooling of up to 20 K in the winter, anomalies that persist (though damped) into the summer season. The heat exchange also drives an asymmetric seasonal response in near-surface air temperatures, with boreal winter anomalies of +6 K and boreal summer anomalies of −2 K. On an annual basis there is a net loss of heat from the soil and increases in ground ice, leading to reductions in infiltration, evapotranspiration, and photosynthesis. Our results show land surface processes and the surface climate within CAM3–CLM3 are sensitive to the treatment of snow thermal conductivity.  相似文献   

16.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   

17.
Summary ¶Various water budget elements (water supply to the atmosphere, ground water recharge, change in storage) are predicted by HTSVS for a period of 2050 days. The predicted water budget elements are evaluated by routine lysimeter data. The results show that land surface models need parameterizations for soil frost, snow effects and water uptake to catch the broad cycle of soil water budget elements. In principle, HTSVS is able to simulate the general characteristics of the seasonal changes in these water budget elements and their long-term accumulated sums. Compared to lysimeter data, there is a discrepancy in the predicted water supply to the atmosphere for summer and winter which may be attributed to the hardly observed plant physiological parameters like root depth, LAI, shielding factor, etc., the lack of measured downward long-wave radiation, and some simplifications made in the parameterizations of soil frost and snow effects. The fact that high resolution data for the evaluation of model results are missing and evaluation is made on the basis of the data from routine stations of a network is typical for the results of long-term studies on climate. Taking into account the coarse resolution of climate models, the coarse vertical resolution that is used in their LSMs, and the lack of suitable parameters needed, it seems that discrepancies in the order of magnitude found in this study are a general uncertainty in the results of land surface modeling on typical spatial and temporal scales of the climate system.Received October 8, 2001; revised February 15, 2002; accepted September 20, 2002 Published online: April 10, 2003  相似文献   

18.
The Chinese Academy of Meteorological Sciences (CAMS) has been devoted to developing a climate system model (CSM) to meet demand for climate simulation and prediction for the East Asian region. In this study, we evaluated the performance of CAMS-CSM in regard to sensible heat flux (H), latent heat flux (LE), surface temperature, soil moisture, and snow depth, focusing on the Atmospheric Model Intercomparison Project experiment, with the aim of participating in the Coupled Model Intercomparison Project phase 6. We systematically assessed the simulation results achieved by CAMS-CSM for these variables against various reference products and ground observations, including the FLUXNET model tree ensembles H and LE data, Climate Prediction Center soil moisture data, snow depth climatology data, and Chinese ground observations of snow depth and winter surface temperature. We compared these results with data from the ECMWF Interim reanalysis (ERA-Interim) and Global Land Data Assimilation System (GLDAS). Our results indicated that CAMS-CSM simulations were better than or comparable to ERAInterim reanalysis for snow depth and winter surface temperature at regional scales, but slightly worse when simulating total column soil moisture. The root-mean-square differences of H in CAMS-CSM were all greater than those from the ERA-Interim reanalysis, but less than or comparable to those from GLDAS. The spatial correlations for H in CAMS-CSM were the lowest in nearly all regions, except for North America. CAMS-CSM LE produced the lowest bias in Siberia, North America, and South America, but with the lowest spatial correlation coefficients. Therefore, there are still scopes for improving H and LE simulations in CAMS-CSM, particularly for LE.  相似文献   

19.
Abstract

The results of a field test of time‐domain reflectometry (TDR) to measure apparent liquid soil water contents and to locate the unfrozen‐frozen interface during thawing conditions is presented. The apparent liquid water content was observed in the fall and through a late winter thaw on two sand sites, one with a natural snow cover and the other with snow removed throughout the winter. Temperatures were monitored at intervals throughout the profile. The results indicate that TDR provides a method for monitoring apparent liquid water content andfreeze‐thaw processes.  相似文献   

20.
长江流域水分收支以及再分析资料可用性分析   总被引:9,自引:0,他引:9  
赵瑞霞  吴国雄 《气象学报》2007,65(3):416-427
首先利用实测资料定量计算了长江流域水分收支的各分量,包括降水、径流、蒸发、水汽辐合等,分析其季节循环、年际变化以及线性趋势变化。结果表明,多年平均该流域是水汽汇区,主要来自平均流输送造成的水汽辐合,而与天气过程密切相关的瞬变波则主要造成流域的水汽辐散。蒸发所占比例接近于径流,对流域水分循环十分重要。大部分要素的季节变化和年际变化都很大,只有蒸发和大气含水量的年际变化较小。降水和平均流输送造成的水汽辐合一般在6月达到年内最大,12月达到年内最小,而径流和大气含水量则一般滞后1个月于7月达到年内最大,1月降为年内最小。1958—1983年,夏半年降水略微增加,冬半年略微减少,各月实测径流为弱的增长趋势,但均不显著,年平均蒸发亦无显著的趋势变化。然后将实测资料同ECMWF及NCEP/NCAR再分析资料作进一步对比分析,以检验两套再分析资料对长江流域水分循环的描述能力。在量值上,NCEP/NCAR再分析资料中的降水、蒸发、径流均比实测偏大很多,大气含水量及由平均流输送所造成的水汽辐合则偏小很多;ECMWF再分析资料中的降水量、径流量基本上与实测接近,蒸发量偏大,大气含水量及由平均流输送所造成的水汽辐合偏小,但比NCEP/NCAR再分析资料要接近实测。另外,该两套再分析资料均可以较好地描述长江流域水分收支的季节循环和年际变化,而且同样是ECMWF再分析资料与实测资料的一致性更好。但是两套再分析资料在1958—1983年均存在十分夸张的线性趋势变化,尤其是ECMWF再分析资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号