首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The upper layer, wind-driven circulation of the South China Sea (SCS), its through-flow (SCSTF) and the Indonesian through flow (ITF) are simulated using a high resolution model, FVCOM (finite volume coastal ocean model) in a regional domain comprising the Maritime Continent. The regional model is embedded in the MIT global ocean general circulation model (ogcm) which provides surface forcing and boundary conditions of all the oceanographic variables at the lateral open boundaries in the Pacific and Indian oceans. A five decade long simulation is available from the MITgcm and we choose to investigate and compare the climatologies of two decades, 1960–1969 and 1990–1999.The seasonal variability of the wind-driven circulation produced by the monsoon system is realistically simulated. In the SCS the dominant driving force is the monsoon wind and the surface circulation reverses accordingly, with a net cyclonic tendency in winter and anticyclonic in summer. The SCS circulation in the 90s is weaker than in the 60s because of the weaker monsoon system in the 90s. In the upper 50 m the interaction between the SCSTF and ITF is very important. The southward ITF can be blocked by the SCSTF at the Makassar Strait during winter. In summer, part of the ITF feeds the SCSTF flowing into the SCS through the Karimata Strait. Differently from the SCS, the ITF is primarily controlled by the sea level difference between the western Pacific and eastern Indian Ocean. The ITF flow, consistently southwestward below the surface layer, is stronger in the 90s.The volume transports for winter, summer and yearly are estimated from the simulation through all the interocean straits. On the annual average, there is a ∼5.6 Sv of western Pacific water entering the SCS through the Luzon Strait and ∼1.4 Sv exiting through the Karimata Strait into the Java Sea. Also, ∼2 Sv of SCS water enters the Sulu Sea through the Mindoro Strait, while ∼2.9 Sv flow southwards through the Sibutu Strait merging into the ITF. The ITF inflow occurs through the Makassar Strait (up to ∼62%) and the Lifamatola Strait (∼38%). The annual average volume transport of the ITF inflow from the simulation is ∼15 Sv in the 60s and ∼16.6 Sv in the 90s, very close to the long term observations. The ITF outflow through the Lombok, Ombai and Timor straits is ∼16.8 Sv in the 60s and 18.9 Sv in the 90s, with the outflow greater by 1.7 Sv and 2.3 Sv respectively. The transport estimates of the simulation at all the straits are in rather good agreement with the observational estimates.We analyze the thermal structure of the domain in the 60s and 90s and assess the simulated temperature patterns against the SODA reanalysis product, with special focus on the shallow region of the SCS. The SODA dataset clearly shows that the yearly averaged temperatures of the 90s are overall warmer than those of the 60s in the surface, intermediate and some of the deep layers and the decadal differences (90s  60s) indicate that the overall warming of the SCS interior is a local effect. In the simulation the warm trend from the 60s to the 90s in well reproduced in the surface layer. In particular, the simulated temperature profiles at two shallow sites at midway in the SCSTF agree rather well with the SODA profiles. However, the warming trend in the intermediate (deep) layers is not reproduced in the simulation. We find that this deficiency is mostly due to a deficiency in the initial temperature fields provide by the MITgcm.  相似文献   

2.
In October 7–9, 2016, Hurricane Matthew moved along the southeastern coast of the U.S., causing major flooding and significant damage, even to locations farther north well away from the storm’s winds. Various observations, such as tide gauge data, cable measurements of the Florida Current (FC) transport, satellite altimeter data and high-frequency radar data, were analyzed to evaluate the impact of the storm. The data show a dramatic decline in the FC flow and increased coastal sea level along the U.S. coast. Weakening of the Gulf Stream (GS) downstream from the storm’s area contributed to high coastal sea levels farther north. Analyses of simulations of an operational hurricane-ocean coupled model reveal the disruption that the hurricane caused to the GS flow, including a decline in transport of ∼20 Sv (1 Sv = 106 m3 s−1). In comparison, the observed FC reached a maximum transport of ∼40 Sv before the storm on September 10 and a minimum of ∼20 Sv after the storm on October 12. The hurricane impacts both the geostrophic part of the GS and the wind-driven currents, generating inertial oscillations with velocities of up to ±1 m s−1. Analysis of the observed FC transport since 1982 indicated that the magnitude of the current weakening in October 2016 was quite rare (outside 3 standard deviations from the mean). Such a large FC weakening in the past occurred more often in October and November, but is extremely rare in June-August. Similar impacts on the FC from past tropical storms and hurricanes suggest that storms may contribute to seasonal and interannual variations in the FC. The results also demonstrated the extended range of coastal impacts that remote storms can cause through their influence on ocean currents.  相似文献   

3.
This study presents an analysis of a severe weather case that took place during the early morning of the 2nd of November 2008, when intense convective activity associated with a rapidly evolving low pressure system affected the southern coast of Catalonia (NE Spain). The synoptic framework was dominated by an upper level trough and an associated cold front extending from Gibraltar along the Mediterranean coast of the Iberian Peninsula to SE France, which moved north-eastward. South easterly winds in the north of the Balearic Islands and the coast of Catalonia favoured high values of 0–3 km storm relative helicity which combined with moderate MLCAPE values and high shear favoured the conditions for organized convection. A number of multicell storms and others exhibiting supercell features, as indicated by Doppler radar observations, clustered later in a mesoscale convective system, and moved north-eastwards across Catalonia. They produced ground-level strong damaging wind gusts, an F2 tornado, hail and heavy rainfall. Total lightning activity (intra-cloud and cloud to ground flashes) was also relevant, exhibiting several classical features such as a sudden increased rate before ground level severe damage, as discussed in a companion study. Remarkable surface observations of this event include 24 h precipitation accumulations exceeding 100 mm in four different observatories and 30 minute rainfall amounts up to 40 mm which caused local flash floods. As the convective system evolved northward later that day it also affected SE France causing large hail, ground level damaging wind gusts and heavy rainfall.  相似文献   

4.
We analyzed a 20-year time series (January 1st, 1993 through December 31st, 2012) of Loop Current (LC) surface area derived from satellite altimetry in the eastern Gulf of Mexico to estimate kinematical metrics of this potent flow. On average the LC intrudes to its maximum northward position about 216 ± 126 days after the previous eddy separation; and ∼30 ± 31 days later sheds a large anticyclonic eddy. When the northern extent of the LC intrusion following the previous eddy separation is greater than 27°N, the current retreats very quickly until it sheds another eddy with the entire separation process occurring on the order of 30 days. To first order the change in areal extent of the LC during intrusion into the Gulf occurs at an average rate of 225 km2 day−1, which corresponds to an intrusion velocity of 1.7 cm s−1 of the LC front, and adds Caribbean water to the Gulf at a rate of 2.6 ± 0.7 Sv.  相似文献   

5.
The relationships between meteorological conditions (temperature, wind-speed and direction, relative humidity, surface-inversion depth and strength, and stability) and PM2.5 concentrations in Fairbanks, Alaska were investigated using ten years of observational data. The results show that during wintertime (November through February) PM2.5 concentrations exceeding the 24 h National Air Quality Standard (35 μg/m3) occurred under calm wind, extremely low temperature (≤20 °C) and moisture (water-vapor pressure < 2 hPa) multiday surface-inversion conditions that trap the pollutants in the breathing level and inhibit transport of polluted air out of Fairbanks. PM2.5 concentrations tend to be higher under stable than other conditions, but are not sensitive to the degree of stability. The presence of a surface inversion and calm wind are necessary, but in combination with low temperatures and humidity, the conditions are sufficient for high PM2.5 concentrations. The low temperatures are required because they lead to increased emission rates from domestic heating and power production. During multiday inversions with temperatures above ? 20 °C, high relative humidity (> 75%) partly caused by water-vapor emission reduces PM2.5 concentrations.  相似文献   

6.
Impacts of the South China Sea Throughflow (SCST) on seasonal and interannual variations of the Indonesian Throughflow are studied by comparing outputs from ocean general circulation model (OGCM) experiments with and without the SCST. The observed subsurface maximum in the southward flow through the Makassar Strait is simulated only when the SCST, which is driven by the large-scale wind, is allowed in the model. The mean volume and heat transport by the Makassar Strait Throughflow are reduced by 1.7 Sv and 0.19 PW, respectively, by the existence of the SCST in the model. The difference is particularly remarkable during boreal winter when the SCST reaches its seasonal maximum. Furthermore, the SCST is strengthened during El Niño, leading to the weakening in the southward volume and heat transport through the Makassar Strait by 0.37 Sv and 0.05 PW, respectively. These findings from the OGCM experiments suggest that the SCST may play an important role in climate variability of the Indo-Pacific Ocean.  相似文献   

7.
Concentrations and flux densities of methane were determined during a Lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L−1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100–350 m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 μmol m−2 d−1 to a maximum of 22.6 μmol m−2 d−1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.  相似文献   

8.
A new methodology is proposed to estimate the strength of the South Atlantic Anticyclone (SAA), using the gridded sea level pressure (SLP) of the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data. The top quartile (1017.3 hPa) of the SLP data was found a reasonable criterion to delimit the SAA area. Consequently, we defined the SAA area as the quadrangle containing 80% of the observations with pressure >1017.3 hPa. In this quadrangle, an area weighted pressure gradient (AWPG) was computed for the whole area and for the north–south and west–east halves. When compared with maximum pressure, the AWPG showed a better correlation with the significant wave height (SWH) and wind speed (WS) derived from altimetry. The mean value of the AWPG was 8 × 10−4 Pa/m, with representative values of 9.1 × 10−4 Pa/m and 7.4 × 10−4 Pa/m for austral winter and summer, respectively. The phase difference between the monthly AWPG in the north and south sub-quadrangles accounts for the evolution of the spatial pattern of the anticyclone throughout a year. This quantitative approach proved to be a useful estimate of the strength of South Atlantic Anticyclone. Further improvements of this approach are discussed.  相似文献   

9.
The Gulf Stream, one of the strongest currents in the world, transports approximately 31 Sv of water (Kelly and Gille, 1990, Baringer and Larsen, 2001, Leaman et al., 1995) and 1.3 × 1015 W (Larsen, 1992) of heat into the Atlantic Ocean, and warms the vast European continent. Thus any change of the Gulf Stream could lead to the climate change in the European continent, and even worldwide (Bryden et al., 2005). Past studies have revealed a diminished Gulf Stream and oceanic heat transport that was possibly associated with a southward migration of intertropical convergence zone (ITCZ) and may have contributed to Little Ice Age (AD ∼1200 to 1850) in the North Atlantic (Lund et al., 2006). However, the causations of the Gulf Stream weakening due to the southward migration of the ITCZ remain uncertain. Here we use satellite observation data and employ a model (oceanic general circulation model – OGCM) to demonstrate that the Brazilian promontory in the east coast of South America may have played a crucial role in allocating the equatorial currents, while the mean position of the equatorial currents migrates between northern and southern hemisphere in the Atlantic Ocean. Northward migrations of the equatorial currents in the Atlantic Ocean have little influence on the Gulf Stream. Nevertheless, southward migrations, especially abrupt large southward migrations of the equatorial currents, can lead to the increase of the Brazil Current and the significant decrease of the North Brazil Current, in turn the weakening of the Gulf Stream. The results from the model simulations suggest the mean position of the equatorial currents in the Atlantic Ocean shifted at least 180–260 km southwards of its present-day position during the Little Ice Age based on the calculations of simple linear equations and the OGCM simulations.  相似文献   

10.
The South China Sea (SCS) interocean circulation and its associated heat and freshwater budgets are examined using the results of a variable-grid global ocean model. The ocean model has a 1/6° resolution in the SCS and its adjacent oceans. The model results from 1982 to 2003 show that the western Pacific waters enter the SCS through the Luzon Strait with an annual mean volume transport of 4.80 Sv, of which 1.71 Sv returns to the western Pacific through the Taiwan Strait and East China Sea and 3.09 Sv flows toward the Indian Ocean. The heat in the western Pacific is transported to the SCS with a rate of 0.373 PW (relative to a reference temperature 3.72 °C), while the total heat transport through the outflow straits is 0.432 PW. The net heat transport out of the SCS is thus 0.059 PW, which is balanced by a mean net downward heat flux of 17 W/m2 across the SCS air–sea interface. Therefore, the interocean circulation acts as an “air conditioner”, cooling the SCS and its overlaying atmosphere. The SCS contributes a heat transport of 0.279 PW to the Indian Ocean, of which 0.240 PW is from the Pacific Ocean through the Luzon Strait and 0.039 PW is from the SCS interior gained from the air–sea exchange. The Luzon Strait salt transport is greater than the total salt transport leaving the SCS by 3.97 Gg/s, implying a mean freshwater flux of 0.112 Sv (or 3.54 × 1012 m3/year) from the land discharge and P − E (precipitation minus evaporation). The total annual land discharge to the SCS is estimated to be 1.60 × 1012 m3/year, the total annual P − E over the SCS is thus 1.94 × 1012 m3/year, equivalent to a mean P − E of 0.55 m/year. The SCS freshwater contribution to the Indian Ocean is 0.096 Sv. The pattern of the SCS interocean circulation in winter differs greatly from that in summer. The SCS branch of the Pacific-to-Indian Ocean throughflow exists in winter, but not in summer. In winter this branching flow starts at the Luzon Strait and extends to the Karimata Strait. In summer the interocean circulation is featured by a north-northeastward current starting at the Karimata Strait and extending to the Taiwan and Luzon Straits, and a subsurface inflow from the Luzon Strait that upwells into the surface layer in the SCS interior to supply the outward transports.  相似文献   

11.
Conventional surface data and quantitative estimations of precipitation are used to document the occurrence and spatial distribution of severe weather phenomena associated with deep moist convection over southeastern South America.Data used in this paper are 24-hour rainfall, maximum hourly gusts and present weather reports from the surface station network for Argentina to the north of 40°S and cover the period 2000–2005. Hourly rainfall estimated with the CMORPH technique (CPC MORPHing technique, R. J. Joyce et al., 2004) is included in the analysis in order to increase the density of the precipitation database from January 2003 to December 2005. Extreme events are detected by means of a 95th-percentile analysis of the 24-hour rainfall and wind; values greater than 30 mm and 25 m s?1 respectively are considered extreme in the study area. These results are related to the presence of deep convection by considering the 235 K and 218 K cloud shield evolution in Geostationary Operational Environmental Satellite-12 Infrared (GOES-IR) imagery evaluated by the Forecasting and Tracking of Cloud Cluster (FORTRACC) technique. Rainfall above 30 mm day?1 and present convection-related weather events tend to occur in the northeast of the country.Finally, an analysis is made of the relationship between severe phenomena and the location and lifecycle of Mesoscale Convective Systems (MCSs) defined by the 218 K or 235 K levels. According to the reports, favorable locations for severe weather concentrate to the northeast of the cloud shield anvil centroid although most of the cases are found in the northwest. This feature can be seen in systems with anvil areas larger than 250,000 km2 in association to the predominant mid-level wind shear direction from the northwest over the area. Moreover, systems with centers located north of 30°S present a more circular shape while those to the south are more elongated with a NW–SE main axis clearly related to the presence and interaction with frontal zones over the area. Most of the events occur previous to the moment when the systems reach their maximum extension, between 2 and 10 h after the initiation of the system depending on the size of the MCSs.  相似文献   

12.
Wind data from NCEP and hydrographic data obtained during 8–27 March 1992 have been used to compute circulation in the Luzon Strait and the northern South China Sea using three-dimensional diagnostic models with a modified inverse method. Numerical results are as follows: the main Kuroshio is located above 800 m levels. It has two intrusive branches of the Kuroshio in the areas above 400 m. One part intrudes anti-cyclonically northwestward, then flows through the area above 200 m southwest of Taiwan and into the Taiwan Strait. The other part intrudes westward and flows cyclonically in the areas north of the cyclonic eddies, then flows southward through the southern boundary of the region. The net westward volume transport (VT) through Section at 120°15′E between Luzon Island and Taiwan Island is about 3.0 Sv, net northward VT through northern boundaries into the Taiwan Strait is about 1.4 Sv and net southward VT through southern boundaries is about 1.6 Sv, which finally flows into the Karimata and Mindoro Straits. In the areas above 400 m east of 117°15′E, the circulation is mainly dominated by the basin-scale cyclonic gyre, which consists of two cyclonic eddies. However, in the areas below 400 m east of 119°00′E, the circulation is mainly dominated by basin-scale anti-cyclonic gyre. The joint effect of baroclinity and relief and interaction between wind stress and relief are important in different area respectively for the pattern of the depth-averaged flow across contours of fH−1.  相似文献   

13.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   

14.
Hourly data of CO2 fugacity (fCO2) at 8°N–38°W were analyzed from 2008 to 2011. Analyses of wind, rainfall, temperature and salinity data from the buoy indicated two distinct seasonal periods. The first period (January to July) had a mean fCO2 of 378.9 μatm (n = 7512). During this period, in which the study area was characterized by small salinity variations, the fCO2 is mainly controlled by sea surface temperature (SST) variations (fCO2 = 24.4*SST-281.1, r2 = 0.8). During the second period (August–December), the mean fCO2 was 421.9 μatm (n = 11571). During these months, the region is subjected to the simultaneous action of (a) rainfall induced by the presence of the Intertropical Convergence Zone (ITCZ); (b) arrival of fresh water from the Amazon River plume that is transported to the east by the North Equatorial Countercurrent (NECC) after the retroflection of the North Brazil Current (NBC); and (c) vertical input of CO2-rich water due to Ekman pumping. The data indicated the existence of high-frequency fCO2 variability (periods less than 24 h). This high variability is related to two different mechanisms. In the first mechanism, fCO2 increases are associated to rapid increases in SST and are attributed to the diurnal cycle of solar radiation. In addition, low wind speed contributes to SST rising by inhibiting vertical mixing. In the second mechanism, fCO2 decreases are associated to SSS decreases caused by heavy rainfall.  相似文献   

15.
Nearly all long-term energy projections rely heavily on renewable energy sources on the assumption of abundance. Yet, already today, wind and solar projects can encounter local objections and competition with other uses. This paper presents the ranges of realistic potential supply for solar and wind electricity, using a 1 km2 grid level analysis covering the whole world at country level. In addition, the potential for building-based solar electricity is assessed. We find that long-term combined potentials range between 730 and 3700 EJ/a worldwide, depending crucially on the acceptable share of land—up to 3.5% of total (non-ice covered) land on earth. Realistic potentials account for limitations such as land-use competition and acceptance, together with resource quality and remoteness as proxies for cost. Today's electricity demand (65 EJ/a) is well covered by the range, but constraints may occur in the long run locally. Amongst large countries, Nigeria and India may need imports to meet electricity demand.  相似文献   

16.
A mooring equipped with 200 high-resolution temperature sensors between 6 and 404 m above the bottom was moored in 1890 m water depth above a steep, about 10° slope of Mount Josephine, NE-Atlantic. The sensors have a precision of less than 0.5 mK. They are synchronized via induction every 4 h so that the 400 m range is measured to within 0.02 s, every 1 s. Thin cables and elliptical buoyancy assured vertical mooring motions to be smaller than 0.1 m under maximum 0.2 m s−1 current speeds. The local bottom slope is supercritical for semidiurnal internal tides by a factor of two. Exploring a one-month record in detail, the observations show: 1/semidiurnal tidal dominance in variations of dissipation rate ε, eddy diffusivity Kz and temperature, but no significant correlation between the records of ε and total kinetic energy, 2/a variation with time over four orders of magnitude of 100-m vertically averaged ε, 3/a local minimum in density stratification between 50 and 100 m above the bottom, 4/a gradual decrease in daily or longer averaged ε and Kz by one order of magnitude over a vertical distance of 250 m, upwards from 150 m above the bottom, 5/monthly mean values of <[ε]> = 2 ± 0.5 × 10−7 m2 s−3, <[Kz]> = 8 ± 3 × 10−3 m2 s−1 averaged over the lower 150 m above the bottom.  相似文献   

17.
This study incorporates observations from Array of Real-time Geostrophic Oceanography (ARGO) floats and surface drifters to identify seasonal circulation patterns at the surface, 1000 m, 1500 m, and 2000 m in the northwest Indian Ocean, and quantify velocities associated with them. A skill comparison of the Simple Ocean Data Assimilation (SODA) reanalysis output was also performed to contribute to the understanding of the circulation dynamics in this region.Subsurface currents were quantified and validated using the ARGO float data. Surface currents were identified using surface drifter data and compared to the subsurface observations to enhance our previous understanding of surface circulations. Quantified Southwest Monsoon surface currents include the Somali Current (vmax = 179.5 cm/s), the East Arabian Current (vmax = 52.3 cm/s), and the Southwest Monsoon Current (vmax = 51.2 cm/s). Northeastward flow along the Somali coast is also observed at 1000 m (vmax = 26.1 cm/s) and 1500 m (vmax = 12.7 cm/s). Currents associated with the Great Whirl are observed at the surface (vmax = 161.4 cm/s) and at 1000 m (vmax = 16.2 cm/s). In contrast to previous studies, both ARGO and surface drifter data show the Great Whirl can form as early as the boreal Spring intermonsoon, lasting until the boreal Fall intermonsoon. The Arabian Sea exhibits eastward/southeastward flow at the surface, 1000 m, 1500 m, and 2000 m. Quantified Northeast Monsoon surface currents include the Somali Current (vmax = 97.3 cm/s), Northeast Monsoon Current (vmax = 30.0 cm/s), and the North Equatorial Current (vmax = 28.5 cm/s). Southwestward flow along the Somali coast extends as deep as 1500 m.Point-by-point vector and scalar correlations of SODA output to ARGO and surface drifter data showed that surface SODA output and surface drifter data generally produced a strong correlation attributed to surface currents strongly controlled by the monsoons, while subsurface correlations of SODA output and ARGO were mostly insignificant due to variability associated with intermonsoonal transitions. SODA output produced overall smaller velocities than both observational datasets. Assimilating ARGO velocities into the SODA reanalysis could improve subsurface velocity assimilation, especially during the boreal fall and spring when ARGO observations suggest that flow is highly variable.  相似文献   

18.
Winter precipitation over Central Asia and the western Tibetan Plateau (CAWTP) is mainly a result of the interaction between the westerly circulation and the high mountains around the plateau. Empirical Orthogonal Functions (EOFs), Singular Value Decomposition (SVD), linear regression and composite analysis were used to analyze winter daily precipitation and other meteorological elements in this region from 1979 to 2013, in order to understand how interactions between the regional circulation and topography affect the intraseasonal variability in precipitation. The SVD analysis shows that the winter daily precipitation variability distribution is characterized by a dipole pattern with opposite signs over the northern Pamir Plateau and over the Karakoram Himalaya, similar to the second mode of EOF analysis. This dipole pattern of precipitation anomaly is associated with local anomalies in both the 700 hPa moisture transport and the 500 hPa geopotential height and is probably caused by oscillations in the regional and large-scale circulations, which can influence the westerly disturbance tracks and water vapor transport. The linear regression shows that the anomalous mid-tropospheric circulation over CAWTP corresponds to an anti-phase variation of the 500 hPa geopotential height anomalies over the southern and northern North Atlantic 10 days earlier (at 95% significance level), that bears a similarity to the North Atlantic Oscillation (NAO). The composite analysis reveals that the NAO impacts the downstream regions including CAWTP by controlling south-north two branches of the middle latitude westerly circulation around the Eurasian border. During the positive phases of the NAO, the northern branch of the westerly circulation goes around the northwest Tibetan Plateau, whereas the southern branch encounters the southwest Tibetan Plateau, which leads to reduced precipitation over the northern Pamir Plateau and increased precipitation over the Karakoram Himalaya, and vice versa.  相似文献   

19.
Simultaneous measurements of the M-component current (surges superimposed on lightning continuing currents) and the corresponding electromagnetic fields at 60 m and 550 m from the lightning channel are analyzed and simulated with a two-wave model. The measured results reveal that the M-component current at the bottom of the channel exhibits a V-shape character with a leading edge of 78 μs and a trailing edge of 194 μs, while the electric field pulses at 60 m and 550 m have trailing edges faster than leading edges. The peak of the M-component current lags behind the electric field peak by tens of microseconds, when the distance increases to 550 m, the disparity of the time shift increases as well. However, the waveshape of the M-component current is similar to that of the magnetic field pulse. The M-component electric fields at 60 m and 550 m are 1.16 kV/m and 0.17 kV/m, respectively, and exhibit a logarithmic distance dependence which implies that the M-component charge density increases with height. Additionally, a two-wave model is used to examine the sensitivity of the predicted electric and magnetic fields to the speed and current reflection coefficient variations of the M-component. The simulated results show that the effects are different for the electric and magnetic fields. The M-component speed essentially controls the electric field, but has little effect on the magnetic field. Larger reflection coefficient results in a larger magnetic field, but a smaller electric field.  相似文献   

20.
The Pic 2005 field campaign took place from 13 June to 7 July 2005 close to the high-altitude permanent atmospheric observatory Pic-du-Midi (PDM), situated at 2875 m asl in the French Pyrenees. The experimental set-up combined in situ ground-based observations at PDM with ozone lidar measurements at two lower sites in close vicinity (600 m asl/28 km away, and 2380 m asl/500 m away). Such an experimental configuration is appropriate to address the question of the vertical layering of the chemical atmosphere in a mountain area and above the plain nearby, and how this influences measurements conducted on a mountain summit under the influence of horizontal transport at regional scale, and vertical transport at local scale. Forecast tools made it possible to plan and carry out 6 one-day Intensive Observation Periods (IOPs), mostly in anticyclonic conditions favoring local thermally induced circulations, with and without local pollution in the lower troposphere.It was thus possible to document i) ozone diurnal variations at PDM; ii) correlation between ozone measurements at PDM and their counterparts at the same altitude in the free troposphere; iii) ozone variability in the vicinity of PDM.The field campaign provided direct experimental evidence that at daytime in the encountered conditions (mostly anticyclonic), PDM failed in a large extent to be representative of the troposphere above the surrounding flat areas at similar altitude. First, ozone daily averages at PDM were found lower than their free-tropospheric counterpart. Thermally induced circulations and convection pumping clean air from the rural boundary layer can account qualitatively for ozone depletion observed at PDM during daytime. However the surface measurements do not support the hypothesis of direct lifting of near-surface air masses up to PDM. Thus, mixing with free-tropospheric air, photochemistry and surface deposition in the valleys appear to be needed ingredients to account quantitatively for the observed variations (in proportions that further studies should determine). Second, ozone variability was found to be much lower at PDM than in the free troposphere—again an indication of atmospheric mixing. In particular at daytime, the PDM observatory did not allow for detection of ozone-rich layers simultaneously visible above the plain. Beyond these first results, the data set presented here paves way to detailed studies of the IOPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号