首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
ABSTRACT

Reliable seasonal forecasting of water resources variability may be of great value for agriculture and energy management in Ethiopia. This work aims to develop statistical forecasting of seasonal total water storage (TWS) anomalies in Ethiopia using sea-surface temperature and sea-level pressure indices. Because of the spatial and temporal variability of TWS over the country, Ethiopia is divided into four regions each having similar TWS dynamics. Periods of long-term water deficit observed in GRACE TWS products for the region are found to coincide with periods of meteorological drought. Multiple linear regression is employed to generate seasonal forecasting models for each region. We find that the skill of the resulting models varies from region to region, with R 2 from 0.33 to 0.73 and correlation from 0.27 to 0.77 between predicted and observed values (using leave-one-out cross-validation). The skill of the models is better than the climatology in all regions.  相似文献   

2.
There is some evidence of rapid changes in the global atmosphere and hydrological cycle caused by the influence of climate variability. In West Africa, such changes impact directly on water resources leading to incessant extreme hydro‐meteorological conditions. This study examines the association of three global climate teleconnections—El‐Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Atlantic Multi‐decadal Oscillation (AMO) with changes in terrestrial water storage (TWS) derived from both Modern‐Era Retrospective Analysis for Research and Applications (MERRA, 1980–2015) and Gravity Recovery and Climate Experiment (GRACE, 2002–2014). In the Sahel region, positive phase of AMO coincided with above‐normal rainfall (wet conditions) and the negative phase with drought conditions and confirms the observed statistically significant association (r = 0.62) between AMO and the temporal evolutions of standardised precipitation index. This relationship corroborates the observed presence of AMO‐driven TWS in much of the Sahel region (though considerably weak in some areas). Although ENSO appears to be more associated with GRACE‐derived TWS over the Volta basin (r =?0.40), this study also shows a strong presence of AMO‐ and ENSO‐induced TWS derived from MERRA reanalysis data in the coastal West African countries and most of the regions below latitude 10°N. The observed presence of ENSO‐ and AMO‐driven TWS is noticeable in tropical areas with relatively high annual/bimodal rainfall and strong inter‐annual variations in surface water. The AMO has a wider footprint and sphere of influence on the region's TWS and suggests the important role of North Atlantic Ocean. IOD‐related TWS also exists in West Africa and its influence on the region's hydrology maybe secondary and somewhat complementary. Nonetheless, presumptive evidence from the study indicates that ENSO and AMO are the two major climatic indices more likely to impact on West Africa's TWS.  相似文献   

3.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

4.
West African countries have been exposed to changes in rainfall patterns over the last decades, including a significant negative trend. This causes adverse effects on water resources of the region, for instance, reduced freshwater availability. Assessing and predicting large-scale total water storage (TWS) variations are necessary for West Africa, due to its environmental, social, and economical impacts. Hydrological models, however, may perform poorly over West Africa due to data scarcity. This study describes a new statistical, data-driven approach for predicting West African TWS changes from (past) gravity data obtained from the gravity recovery and climate experiment (GRACE), and (concurrent) rainfall data from the tropical rainfall measuring mission (TRMM) and sea surface temperature (SST) data over the Atlantic, Pacific, and Indian Oceans. The proposed method, therefore, capitalizes on the availability of remotely sensed observations for predicting monthly TWS, a quantity which is hard to observe in the field but important for measuring regional energy balance, as well as for agricultural, and water resource management. Major teleconnections within these data sets were identified using independent component analysis and linked via low-degree autoregressive models to build a predictive framework. After a learning phase of 72 months, our approach predicted TWS from rainfall and SST data alone that fitted to the observed GRACE-TWS better than that from a global hydrological model. Our results indicated a fit of 79 % and 67 % for the first-year prediction of the two dominant annual and inter-annual modes of TWS variations. This fit reduces to 62 % and 57 % for the second year of projection. The proposed approach, therefore, represents strong potential to predict the TWS over West Africa up to 2 years. It also has the potential to bridge the present GRACE data gaps of 1 month about each 162 days as well as a—hopefully—limited gap between GRACE and the GRACE follow-on mission over West Africa. The method presented could also be used to generate a near-real-time GRACE forecast over the regions that exhibit strong teleconnections.  相似文献   

5.
A disproportionate increase or decrease in water table in response to minor water input or drainage is observed in shallow water table conditions inside drainage lysimeters. This increase happens because the capillary fringe of the shallow water table reaches up to or near the surface (Wieringermeer effect). The correlations between water table level changes and rainfall, seepage irrigation, drip irrigation, and drainage were analysed. Correlations with rainfall, seepage irrigation, and drainage were high (R2 ranged from 0·46 to 0·97). Drip irrigation had low correlations due to the low rates of application (R2 ranged from 0·26 to 0·44). Conventional methods of calculating recharge, such as multiplying the specific yield with the water table fluctuations, cannot be used for Wieringermeer effect situations. A method using water balance data and soil moisture at different depths in the lysimeters was developed to estimate recharge and upflux. The recharge results were used to develop the apparent specific yield Sya, which could be used to calculate consequent recharge events from water table fluctuation data. Combining the water table fluctuation relationships developed with the Sya value will allow the prediction of recharge from rainfall and irrigation events without the need for soil moisture equipment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Clarifying the distribution and dynamics of soil moisture during the freeze–thaw process is crucial for surface ecology and is an objective requirement to investigate the mechanism of changes during the groundwater recharge process in a freeze–thaw zone. Based on the monitoring data of soil moisture and temperature in the Changbai Mountain area, the freeze–thaw process is classified into four periods. This study investigates the hydrothermal migration processes during different periods. The simultaneous heat and water model is used to simulate and analyse the infiltration of soil moisture into groundwater under five precipitation insurance rates. The results are as follows: (1) The smaller the soil depth, the stronger is the correlation between soil temperature and air temperature during the freeze–thaw process. (2) The redistribution of soil moisture before and after freeze–thaw is significantly affected by the soil texture, and soil permeability affects the recharge of soil moisture from the upper region to the lower region during the thawing period. (3) Groundwater receives vertical infiltration recharge mainly during non-freezing and is supplied by freezing and snowmelt recharge during the stable thawing period. The percentage of soil water infiltration during the stable thawing period in the total annual infiltration increases gradually with the precipitation insurance rate.  相似文献   

7.
Abstract

Characterization of the seasonal and inter-annual spatial and temporal variability of rainfall in a changing climate is vital to assess climate-induced changes and suggest adequate future water resources management strategies. Trends in annual, seasonal and maximum 30-day extreme rainfall over Ethiopia are investigated using 0.5° latitude?×?0.5° longitude gridded monthly precipitation data. The spatial coherence of annual rainfall among contiguous rainfall grid points is also assessed for possible spatial similarity across the country. The correlation between temporally coinciding North Atlantic Multidecadal Oscillation (AMO) index and annual rainfall variability is examined to understand the underlying coherence. In total 381 precipitation grid points covering the whole of Ethiopia with five decades (1951–2000) of precipitation data are analysed using the Mann-Kendall test and Moran spatial autocorrelation method. Summer (July–September) seasonal and annual rainfall data exhibit significant decreasing trends in northern, northwestern and western parts of the country, whereas a few grid points in eastern areas show increasing annual rainfall trends. Most other parts of the country exhibit statistically insignificant trends. Regions with high annual and seasonal rainfall distribution exhibit high temporal and spatial correlation indices. Finally, the country is sub-divided into four zones based on annual rainfall similarity. The association of the AMO index with annual rainfall is modestly good for northern and northeastern parts of the country; however, it is weak over the southern region.

Editor Z.W. Kundzewicz; Associate editor S. Uhlenbrook

Citation Wagesho, N., Goel, N.K., and Jain, M.K. 2013. Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58 (2), 354–373.  相似文献   

8.
A model to simulate recharge processes of karst massifs   总被引:1,自引:0,他引:1       下载免费PDF全文
The recharge processes have been evaluated for two karst massifs of southern Italy, the Mt Terminio and Mt Cervialto, characterized by wide endorheic areas. The annual mean recharge has been estimated by Geographic Information System (GIS) tools, from regression of annual mean values of different ground‐elevated rain gauges and thermometers. The recharge has been distinguished for endorheic areas and the other areas of spring catchment, and the ratio between the output spring and input rainfall has been also estimated (recharge coefficient). The annual recharge has been used to calibrate a daily scale model, which allows to estimate the amount of effective rainfall, which is retained as soil moisture; the amount reaching the water table (recharge s.s.); and the amount of rainfall, which develops the runoff and leaves the catchment. All these amounts vary through the hydrological year, in function of soil moisture deficit and daily rainfall intensity. The model allows estimating the recharge conditions through the hydrological year, and it is a useful tool for water management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In recent years, the Gravity Recovery and Climate Experiment (GRACE) has provided a new tool to study terrestrial water storage variations (TWS) at medium and large spatial scales, providing quantitative measures of TWS change. Linear trends in TWS variations in Turkey were estimated using GRACE observations for the period March 2003 to March 2009. GRACE showed a significant decrease in TWS in the southern part of the central Anatolian region up to a rate of 4 cm/year. The Global Land Data Assimilation System (GLDAS) model also captured this TWS decrease event but with underestimated trend values. The GLDAS model represents only a part of the total TWS variations, the sum of soil moisture (2 m column depth) and snow water equivalent, ignoring groundwater variations. Therefore, GLDAS model derived TWS variations were subtracted from GRACE derived TWS variations to estimate groundwater storage variations. Results revealed that decreasing trends of TWS observed by GRACE in the southern part of central Anatolia were largely explained by the decreasing trends of groundwater variations which were confirmed by the limited available well groundwater level data in the region.  相似文献   

10.
Across equatorial Africa, increasing demand for groundwater has raised concerns about resource sustainability and has highlighted the need for reliable estimates of groundwater recharge. Recharge investigations in this environment are typically inhibited by a shortage of good quality meteorological and hydrogeological records. Moreover, when recharge studies are attempted they tend to rely on a single technique and frequently lack corroborating evidence to substantiate recharge predictions. In recent studies undertaken in the Aroca catchment of the Victoria Nile basin in central Uganda, the timing and magnitude of recharge determined by a soil moisture balance approach are supported by stable isotope data and groundwater flow modelling. The soil moisture balance study reveals that recharge averages in the order of 200 mm year−1 and is more dependent on the number of heavy (more than 10 turn day−1) rainfall events than the total annual volume of rainfall. Stable isotope data suggest independently that recharge occurs during the heaviest rains of the monsoons, and further establish that recharge stems entirely from the direct infiltration of rainfall, an assumption implicit in the soil moisture balance approach. Deforestation over the last 30 years is shown to have more than doubled the recharge estimate. Aquifer flow modelling supports the recharge estimates but demonstrates that the vast majority (over 99%) of recharging waters must be transmitted by the aquifer in the regolith rather the underlying bedrock fractures which have traditionally been developed for rural water supplies.  相似文献   

11.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The impact of rainfall on the spatial-temporal soil moisture variability is investigated by using a model of the soil moisture dynamics and two rainfall models, the noise-forced diffusive precipitation model and the WGR model. The study shows that the variability of the soil moisture field is impacted during the limited time of the storm period. During the interstorm period, the variability of the soil moisture field is closely related with the soil texture, as supported by the analysis of the Washita '92 data set. As the impact of rainfall on the variability of the soil moisture field is limited to the short time period of precipitation, the role of the rainfall is simplified as a source of water to the soil moisture field without any consideration of its variability and/or organization in space. A simulation study of the soil moisture field temporal evolution also supports this result, i.e. a strong relationship between the soil moisture field and the variability of its medium. Also, larger variabilities of the loss field coefficient result in easier removal of moisture from the soil.  相似文献   

13.
The anomalous entrance of water into groundwater systems can affect storage throughout long periods and normally relies on infrequent and irregular pulses of groundwater recharge defined by the term episodic recharge. Recently there was a groundwater recharge of large magnitude with unknown circumstances in the Caiuá aquifer. This unique event was explored in detail here and allowed to better understand the occurrence of such events in humid subtropical climates in South America. For this study, groundwater monitoring daily data from the Integrated Groundwater Monitoring Network was used combined with a specific yield obtained from geophysical wireline logging to obtain groundwater recharge rates. To improve the investigation, we also used a baseflow separation method to obtain the groundwater contribution into local rivers. The groundwater storage variations were also assessed by remote sensing with the GRACE data. Results showed the importance of high soil moisture storage on the occurrence of large episodic recharge events. We estimated that the groundwater recharger volumes derived from 1 year that included the unique episodic recharge observed (total of 866 mm for April 2015–March 2016) were comparable with the sum of 7 years of groundwater recharge (total of 867 mm). Atypical rainfall in winter periods were responsible for the increase in soil moisture that explained that unique event. GRACE-based GWS showed concordance detecting the occurrence of the unique episodic recharge. However, the variation in terms of volumes obtained by GRACE does not represent the behaviour observed in the aquifer by the WTF method. The results also indicated that changes in aquifer storage caused by episodic recharge events directly affect low flows in rivers over long periods. The main knowledge gap addressed here relates to exploring a unique episodic recharge event quite rare to observe with its long-term impacts on hydroclimatic variability over a humid subtropical portion of the Caiuá aquifer.  相似文献   

14.
ABSTRACT

A study of the water balance of a basin in India, where the annual monsoon season of water surplus contrasts with a longer period of deficit, shows that estimates of soil moisture recharge and groundwater recharge may be obtained in these circumstances by comparing seasonal net rainfall with runoff on two assumptions: soil moisture recharge is constant from year to year, and groundwater recharge is proportional to runoff.  相似文献   

15.
The study of how cave drip‐water discharge responds to recharge events is fundamental to evaluating the potential of actively forming speleothems as high‐resolution climate archives. Most previous research has focused on caves of the Northern Hemisphere middle latitudes, where recharge is strongly seasonal. Few studies have explored drip‐water behaviour from regions where the expected seasonal rainfall pattern is significantly perturbed on an irregular basis by changing regional atmospheric circulation patterns. Here, we report the results of a 4‐year study of cave drip‐water–climate relationships from two caves in eastern Australia. The discharge of 10 drip sites located beneath bedrock thicknesses of 12, 22 and 45 m was monitored either continuously (using automated infrared sensors) or at discrete approximately monthly intervals and compared with local rainfall and water balance data. The study period traversed two major droughts, including the severe 2002–2003 El Niño. Drips at 12 and 22 m depths responded almost simultaneously to individual recharge events, although the time lag between individual events varied according to the volume of recharge and pre‐event storage. Overall, a steady decline in discharge is evident through the moisture‐deficit period, with increased flows through phases of positive water balance. Speleothems growing at these and similar shallow‐chamber sites have potential for reconstructing palaeo‐rainfall trends at high‐resolution, although the highly variable nature of year‐to‐year recharge would make it difficult to obtain data on a calendrical time‐scale. Drips at 45 m depth did not respond consistently to individual recharge events and displayed hydrological behaviour markedly dissimilar to one another and to the near‐surface drip sites, indicating great complexity in karst architecture and the absence of fissure flow. Although speleothems at this depth may well preserve information on longer‐term rainfall trends, their potential to encode a palaeo‐rainfall variability signal at interannual resolution is poor. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
In order to increase the capability to understand and quantify the spatial differences in terrestrial water storage (TWS), and to reflect the unique energy balance processes and soil freeze–thaw mechanisms in the Qinghai-Tibet Plateau (QTP), this study improved the energy balance processes of the water and energy transfer processes model, including its surface radiation calculations and snowmelt module. By integrating these improvements, a water and energy transfer processes model in Qinghai-Tibet Plateau (WEP-QTP) for the Yellow River source region (YRSR) is developed. Using the improved WEP-QTP model to perform simulations, we assessed the daily changes in snow cover, soil moisture (SM), permafrost (PM), and groundwater storage (GWS) in the YRSR. Our analysis revealed an increase in TWS of 0.24 mm/yr from 1961 to 2020. Snow water equivalent (SWE), SM, PM, and GWS have proportional contributions of 8.33%, 216.67%, −154.17%, and 29.17% to the increased TWS, respectively. SM is the primary component of TWS. Temperature (T), precipitation (P), evapotranspiration (E), and solar radiation (Rs) influence the spatiotemporal variations in TWS, as well as those of its components. The increase in P is the primary cause for the rise in TWS, SWE, and SM, while the increase in T predominantly contributes to the decrease in PM. Furthermore, permafrost degradation and climate-induced warming and humidification lead to increased infiltration, resulting in elevated GWS.  相似文献   

17.
Understanding the dynamics of spatial and temporal variability of soil moisture at the regional scale and daily interval, respectively, has important implications for remote sensing calibration and validation missions as well as environmental modelling applications. The spatial and temporal variability of soil moisture was investigated in an agriculturally dominated region using an in‐situ soil moisture network located in central Saskatchewan, Canada. The study site evaluated three depths (5, 20, 50 cm) through 139 days producing a high spatial and temporal resolution data set, which were analysed using statistical and geostatistical means. Processes affecting standard deviation at the 5‐cm depth were different from the 20‐cm and 50‐cm depths. Deeper soil measurements were well correlated through the field season. Further analysis demonstrated that lag time to maximum correlation between soil depths increased through the field season. Temporal autocorrelation was approximately twice as long at depth compared to surface soil moisture as measured by the e‐folding frequency. Spatial correlation was highest under wet conditions caused by uniform rainfall events with low coefficient of variation. Overall soil moisture spatial and temporal variability was explained well by rainfall events and antecedent soil moisture conditions throughout the Kenaston soil moisture network. It is expected that the results of this study will support future remote sensing calibration and validation missions, data assimilation, as well as hydrologic model parameterization for use in agricultural regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

19.
《水文科学杂志》2013,58(4):727-738
Abstract

Projected warming in equatorial Africa, accompanied by greater evaporation and more frequent heavy precipitation events, may have substantial but uncertain impacts on terrestrial hydrology. Quantitative analyses of climate change impacts on catchment hydrology require high-resolution (<50 km) climate data provided by regional climate models (RCMs). We apply validated precipitation and temperature data from the RCM PRECIS (Providing Regional Climates for Impact Studies) to a semi-distributed soil moisture balance model (SMBM) in order to quantify the impacts of climate change on groundwater recharge and runoff in a medium-sized catchment (2098 km2) in the humid tropics of southwestern Uganda. The SMBM explicitly accounts for changes in soil moisture, and partitions effective precipitation into groundwater recharge and runoff. Under the A2 emissions scenario (2070–2100), climate projections from PRECIS feature not only rises in catchment precipitation and modelled potential evapotranspiration by 14% and 53%, respectively, but also increases in rainfall intensity. We show that the common application of the historical rainfall distribution using delta factors to the SMBM grossly underestimates groundwater recharge (i.e. 55% decrease relative to the baseline period of 1961–1990). By transforming the rainfall distribution to account for changes in rainfall intensity, we project increases in recharge and runoff of 53% and 137%, respectively, relative to the baseline period.  相似文献   

20.
In this study we quantify the spatial variability of seasonal water balances within the Omo-Ghibe River Basin in Ethiopia using methods proposed within the Prediction in Ungauged Basins initiative. Our analysis consists of: (1) application of the rainfall–runoff model HBV-Light to several sub-catchments for which runoff data are available, and (2) estimation of water balances in the remaining ungauged catchments through application of the model with regionalized parameters. The analyses of the resulting water balance outcomes reveal that the seasonal water balance across the Omo-Ghibe Basin is driven by precipitation regimes that change with latitude, from being strongly “seasonal” in the north to “precipitation spread throughout the year, but with a definite wetter season” in the south. The basin is divided into two distinct regions based on patterns of seasonal water balance and, in particular, seasonal patterns of soil moisture storage.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Efstratiadis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号