首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 10 毫秒
1.
Quaternary period palaeoenvironmental and palaeoclimatic reconstructions are based on a wide and diverse array of proxy data sets, some of which are geomorphological in nature. In drylands, where organic proxies may be limited, the use of landforms is particularly important, but challenging. The capacity to establish the age of depositional forms, particularly through the use of luminescence dating, has advanced the use of landforms in dryland palaeo‐research, though interpretation of these ‘geoproxy’ records can be complex, especially at the nexus of palaeoclimate and palaeoenvironmental interpretations of past conditions. In this paper the use of aeolian and lacustrine forms in Quaternary research is considered, focusing on the relationships between dynamics, form and climate, and on the essential linkage between process research and palaeoenvironmental research. It is concluded that landform analysis is a critical part of dryland palaeoenvironmental/climate reconstruction, contributing a different set of data compared to other data sources, in terms of the elements of past conditions that are revealed. Five principles are identified to improve the use of geoproxy records in Quaternary research: (1) greater use of geomorphic process studies by Quaternary scientists, to better inform palaeolandform interpretation; (2) further development of the use of chronometric data, especially in terms of interpreting large data; (3) interpret landform records in location‐specific contexts, not in general terms; (4) capitalise of the complexity of spatially‐extensive landform records, which may offer better representations of real Quaternary environmental complexity than ‘at a point’ proxies; (5) establish ways of integrating spatially‐extensive geoproxy records with other palaeoenvironmental records. These challenges are major, but not insurmountable, and should represent goals for geomorphologists, chronologists and quaternary scientists alike. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The focus of this work is to explore the use of the netted whelk, Nassarius reticulatus (L.), as an indicator of mercury (Hg) contamination, by assessing the concentration of Hg in the sediments and in the whelk along the entire Portuguese coast. Total Hg concentrations ranged from below the detection limit (0.01 ng absolute mercury) up to 0.87 mg kg(-1) dry weight (dwt) in sediments and between 0.06 and 1.02 mg kg(-1) (dwt) for organisms, with no significant differences between males and females. Although organic mercury was not detected in the sediments, it represented, on average, 52% of the total Hg in the whelk tissues, and as high as 88% in some cases, suggesting mercury accumulation from dietary intake. Significant negative correlations were found between the total Hg concentrations in the sediments and the log(10) of Hg concentrations in whelk tissues males (r=-0.64; P<0.01) and females (r=-0.52; P<0.01) indicating that the species is a poor indicator of Hg contamination. Nevertheless, since the highest concentrations of organic mercury in the whelk tissues were found in the least contaminated areas, this species must be highly relevant in the trophic web, namely on the possible biomagnification of mercury. The high dietary mercury accumulation from feeding on carrion and the low bioavailability of mercury to whelks in estuarine sediments may be the basis of the mercury accumulation pattern in N. reticulatus.  相似文献   

3.
The potential of surface roughness to quantify geomorphological landforms and processes has been enhanced with the availability of high‐resolution digital terrain models (DTM). Recent studies that attempt to identify landslide features with surface roughness have suggested that this measure of topographic heterogeneity may also be applied to estimate the relative age of landslides. This is a provisional study that explores the potential of this relationship by assessing the ability of surface roughness to act as a proxy for relative landslide age. The surface roughness for a set of 12 dated landslides in the Swabian Alb that occurred between 1789 and 1985 was calculated from a 1 m2 spatial resolution LiDAR DTM with three algorithms: root‐mean‐square‐height (RMSH), standard deviation of slope (SDS), and direction cosine eigenvalue ratios (DCE). Scale‐dependence was analysed by calculating surface roughness for a range of moving window sizes (3 × 3, 5 × 5, 9 × 9 and 15 × 15), and surface roughness for each landslide was summarized by the median and upper quartile. Only weak correlations (best Spearman's rho 0.58) were present between landslide age and surface roughness. This correlation becomes weaker with increasing moving window size. Given weak observed associations and discussed challenges pertaining to the complexities of landslide morphology change over time, we currently find that surface roughness alone may not be justifiable to act as a proxy for landslide age for our study region. Furthermore, we recommend future studies should focus on addressing possible natural and anthropogenic factors such as land use change that may alter surface roughness. These studies may focus on one of the three roughness measures used here as they are strongly correlated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
We assessed inter-annual changes in fish assemblages of a tropical bay which experienced a heavily industrialized process in the last decades. A highly significant difference in community structure among the bay zones, and a decrease in fish richness and abundance over time were found. Changes in fish richness and abundance between the two first (1987–1988 and 1993–1995) and the two latter time periods (1998–2001 and 2012–2013) were sharpest in the inner bay zone, the most impacted bay area, and in the middle zone, whereas the outer zone remained comparatively stable over time. These changes coincided with increased metal pollution (mainly, Zn and Cd) in the bay and with the enlargement of the Sepetiba Port. Spatial changes in the fish community structure among the bay zones were related to differences in salinity, transparency and depth with this latter variable acting as a buffer stabilizing temporal community changes.  相似文献   

5.
The AE indices are generally used for monitoring the level of magnetic activity in the auroral oval region. In some cases, however, the oval is either so expanded or contracted that the latitudinal coverage of the AE magnetometer chain is not adequate. Then, a longitudinal chain in the key region would give more information of the real situation, but, of course, only during some limited UT-period. In order to find out the UT coverage of a single meridional chain, we have compared the global AL and AU indices with corresponding local indices determined using data from the meridional part of the EISCAT Magnetometer Cross during the years 1985–1987. A statistical study shows that the local indices are close (within relative error of 0.2) to the global AU and AL during periods 1500–2000 UT ( 1730–2230 MLT) and 2130–0130 UT (000–0400 MLT), respectively. In the middle of these optimal MLT-sectors the EISCAT Cross sees more than 70% of the cases when the global AE chain records activity. Then, also the correlation between the local and global indices is generally good (>0.7). Thus we conclude that five to six evenly located meridional chains are needed for covering all the UT-periods. On the other hand, already the combination of IMAGE, CANOPUS, and the Greenland chains catches 50% of the substorms. Case-studies show that usually during 2130 – 1100 UT the AL achieved from these chains reproduces the real AL with good timing, although it does not follow all transient variations.  相似文献   

6.
The relationship between the sea ice cover in the North Pacific and the typhoon frequency has been studied in this paper. It follows that the index for the sea ice cover in the North Pacific (ISA) both in December-January-February (DJF) and in March-April-May (MAM) is negatively correlated with annual typhoon number over the western North Pacific (TNWNP) during 1965―2004, with correlation coeffi-cients of -0.42 and -0.49 respectively (above 99% significant level). Large sea ice cover in the North Pacific tends to decrease TNWNP. Positive ISA (MAM) is associated with the tropical circulation and SST anomalies in the North Pacific, which may lead to unfavorable dynamic and thermal conditions for typhoon genesis over WNP from June to October (JJASO). The variability of the atmospheric circula-tion over the North Pacific, associated with the ISA anomaly in MAM is connected to the tropical at-mospheric circulation variability in MAM via the teleconnection wave train. Besides, as the tropical circulation has strong seasonal persistency from the MAM to JJASO, thus, the ISA in MAM-related variability of the tropical atmospheric circulation as well as the SST can affect the typhoon activity over the western North Pacific.  相似文献   

7.
The primary objective of the gravity recovery and climate experiment follow-on (GRACE-FO) satellite mission, due for launch in August 2017, is to continue the GRACE time series of global monthly gravity field models. For this, evolved versions of the GRACE microwave instrument, GPS receiver, and accelerometer will be used. A secondary objective is to demonstrate the effectiveness of a laser ranging interferometer (LRI) in improving the satellite-to-satellite tracking measurement performance. In order to investigate the expected enhancement for Earth science applications, we have performed a full-scale simulation over the nominal mission lifetime of 5 years using a realistic orbit scenario and error assumptions both for instrument and background model errors. Unfiltered differences between the synthetic input and the finally recovered time-variable monthly gravity models show notable improvements with the LRI, on a global scale, of the order of 23 %. The gain is realized for wavelengths smaller than 240 km in case of Gaussian filtering but decreases to just a few percent when anisotropic filtering is applied. This is also confirmed for some typical regional Earth science applications which show randomly distributed patterns of small improvements but also degradations when using DDK4-filtered LRI-based models. Analysis of applied error models indicates that accelerometer noise followed by ocean tide and non-tidal mass variation errors are the main contributors to the overall GRACE-FO gravity model error. Improvements in these fields are therefore necessary, besides optimized constellations, to make use of the increased LRI accuracy and to significantly improve gravity field models from next-generation gravity missions.  相似文献   

8.
Keith Beven was amongst the first to propose and demonstrate a combination of conceptual rainfall–runoff modelling and stochastically generated rainfall data in what is known as the ‘continuous simulation’ approach for flood frequency analysis. The motivations included the potential to establish better links with physical processes and to avoid restrictive assumptions inherent in existing methods applied in design flood studies. Subsequently, attempts have been made to establish continuous simulation as a routine method for flood frequency analysis, particularly in the UK. The approach has not been adopted universally, but numerous studies have benefitted from applications of continuous simulation methods. This paper asks whether industry has yet realized the vision of the pioneering research by Beven and others. It reviews the generic methodology and illustrates applications of the original vision for a more physically realistic approach to flood frequency analysis through a set of practical case studies, highlighting why continuous simulation was useful and appropriate in each case. The case studies illustrate how continuous simulation has helped to offer users of flood frequency analysis more confidence about model results by avoiding (or exposing) bad assumptions relating to catchment heterogeneity, inappropriateness of assumptions made in (UK) industry‐standard design event flood estimation methods, and the representation of engineered or natural dynamic controls on flood flows. By implementing the vision for physically realistic analysis of flood frequency through continuous simulation, each of these examples illustrates how more relevant and improved information was provided for flood risk decision‐making than would have been possible using standard methods. They further demonstrate that integrating engineered infrastructure into flood frequency analysis and assessment of environmental change are also significant motivations for adopting the continuous simulation approach in practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper investigates a resettlement program for communities impacted by volcanic hazards from Mayon volcano in the Philippines. Two resettlement sites are selected, the first FVR–FNM village (named after President Fidel V. Ramos and Mayor Florencio N. Munoz) was settled after the 1993 eruption. The second, Bungkaras Village, was settled after the 2006 eruption and associated typhoon Reming lahar event. These two sites were selected in order to explore the process of relocation over the short and longer term, although the main focus of the study is in the more recently settled Bungkaras Village. The overall aim is to determine if exposure to volcanic hazards has decreased without adding to vulnerability through loss of livelihood, community and culture, and exposure to new risks. A mixed method qualitative approach was utilized including semistructured interviews, participant observations, and a participatory workshop. This enabled an in-depth understanding of life and the challenges faced at the resettlement sites vis-à-vis the original settlements. In order to document the process of site selection, planning, and building, semistructured interviews were conducted with key government officials, emergency managers, and donors of the resettlement projects. This research demonstrates that a volcanic resettlement program must be directed by meaningful consultation with the impacted community who also share in the decision making. Successful resettlement must consider aspects of livelihood security, house design, and the availability of public and lifeline facilities.  相似文献   

10.
Abstract

The deposition of chemical elements in a catchment occurs through three different processes: wet, dry and cloud deposition. Total deposition cannot be inferred from measurements made with open-field raingauges, and still constitutes a challenge to scientific method. The chemical composition of samples from an open-field raingauge (bulk precipitation) was analysed over a period of several years in a small Mediterranean catchment in the Maures Massif, France. The input of chloride measured in this way was two times lower than the output, despite the fact that this element is reputed to be conservative, which means input and output should roughly balance. This implies that input has previously been underestimated. Analysis of the bulk precipitation data was carried out taking into account both the history of rain events and of sampling. This study allowed the relative parts of the different deposition processes to be quantified. Dry deposition can provide from 20% to more than 80% of the anthropogenic and terrigenic elements (Ca2+, Mg2+, K+, NO3 ?, SO4 2-, SiO2) to the rain samples. The occult deposition of marine elements on the catchment area (50% of total deposition) was found to be mostly due to cloud deposition during wet periods.  相似文献   

11.
Today, in different countries, there exist sites with contaminated groundwater formed as a result of inappropriate handling or disposal of hazardous materials or wastes. Numerical modeling of such sites is an important tool for a correct prediction of contamination plume spreading and an assessment of environmental risks associated with the site. Many uncertainties are associated with a part of the parameters and the initial conditions of such environmental numerical models. Statistical techniques are useful to deal with these uncertainties. This paper describes the methods of uncertainty propagation and global sensitivity analysis that are applied to a numerical model of radionuclide migration in a sandy aquifer in the area of the RRC “Kurchatov Institute” radwaste disposal site in Moscow, Russia. We consider 20 uncertain input parameters of the model and 20 output variables (contaminant concentration in the observation wells predicted by the model for the end of 2010). Monte Carlo simulations allow calculating uncertainty in the output values and analyzing the linearity and the monotony of the relations between input and output variables. For the non monotonic relations, sensitivity analyses are classically done with the Sobol sensitivity indices. The originality of this study is the use of modern surrogate models (called response surfaces), the boosting regression trees, constructed for each output variable, to calculate the Sobol indices by the Monte Carlo method. It is thus shown that the most influential parameters of the model are distribution coefficients and infiltration rate in the zone of strong pipe leaks on the site. Improvement of these parameters would considerably reduce the model prediction uncertainty.  相似文献   

12.
Recent studies show that in addition to wind and air pressure effects, a significant portion of the variability of coastal sea level (CSL) along the US East Coast can be attributed to non-local factors such as variations in the Gulf Stream and the North Atlantic circulation; these variations can cause unpredictable coastal flooding. The Florida Current transport (FCT) measurement across the Florida Straits monitors those variations, and thus, the study evaluated the potential of using the FCT as an indicator for anomalously high water level along the coast. Hourly water level data from 12 tide gauge stations over 12 years are used to construct records of maximum daily water levels (MDWL) that are compared with the daily FCT data. An empirical mode decomposition (EMD) approach is used to divide the data into high-frequency modes (periods T < ~30 days), middle-frequency modes (~30 days < T < ~90 days), and low-frequency modes (~90 days < T < ~1 year). Two predictive measures are tested: FCT and FCT change (FCC). FCT is anti-correlated with MDWL in high-frequency modes but positively correlated with MDWL in low-frequency modes. FCC on the other hand is always anti-correlated with MDWL for all frequency bands, and the high water signal lags behind FCC for almost all stations, thus providing a potential predictive skill (i.e., whenever a weakening trend is detected in the FCT, anomalously high water is expected along the coast over the next few days). The MDWL-FCT correlation in the high-frequency modes is maximum in the lower Mid-Atlantic Bight, suggesting influence from the meandering Gulf Stream after it separates from the coast. However, the correlation in low-frequency modes is maximum in the South Atlantic Bight, suggesting impact from variations in the wind pattern over subtropical regions. The middle-frequency and low-frequency modes of the FCT seem to provide the best predictor for medium to large flooding events; it is estimated that ~10–25% of the sea level variability in those modes can be attributed to variations in the FCT. An example from Hurricane Joaquin (September–October, 2015) demonstrates how an offshore storm that never made landfall can cause a weakening of the FCT and unexpected high water level and flooding along the US East Coast. A regression-prediction model based on the MDWL-FCT correlation shows some skill in estimating high water levels during past storms; the water level prediction is more accurate for slow-moving and offshore storms than it is for fast-moving storms. The study can help to improve water level prediction since current storm surge models rely on local wind but may ignore remote forcing.  相似文献   

13.
Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ~(18)O_(OH))of a weathering profile located in the Fujian Province,aiming to validate whether hydroxyl stable isotopes can indicate paleo-precipitation and paleo-temperature.Our results indicate that the d D and δ~(18)O_(OH)changes in the kaolinite hydroxyl of the weathering profile are basically determined by the isotopic composition of paleo-meteoric water and paleotemperature,respectively.Nevertheless,whether the d D and δ~(18)O_(OH)of kaolinite can quantitatively indicate paleo-precipitation and paleo-temperature needs to be verified further,and especially,the structural oxygen isotopic composition that is the essential element for the kaolinite formation temperature calculation has to be constrained in future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号