首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北极海冰对全球气候起着非常重要的调制作用,海冰范围是海冰监测的基本参数。近40年,北极地区持续变暖,北极海冰显著减少,进而引发北极自然环境恶化、北半球极端天气频发、全球海平面上升等一系列环境和气候问题。准确获取北极海冰范围及其演变趋势,确定海冰变化对全球气候系统的响应,是研究和预测全球气候变化趋势的关键之一。HasISST和OISST海冰数据集在海冰监测中应用最为广泛,可为北极地区长时间序列海冰变化研究提供基础数据,但这2套数据集空间分辨率相对较低,应用于北极关键区对中国气候响应研究方面存在很大的局限,为解决这一问题和弥补国内海冰监测微波遥感数据的空白,2011年6月27日,国家卫星气象中心(National Satellite Meteorological Center, NSMC)发布了FY(Fengyun, FY)北极海冰数据集,该数据集利用搭载在FY卫星上的微波成像仪(Microwave Radiation Imager, MWRI)数据,使用Enhance NASA Team算法制作,该算法利用前向辐射传输模型模拟北极地区4种海表类型(海水、新生冰、一年冰和多年冰)在不同大气条件下MWRI辐射亮温,进而得到每种大气条件下0~100%的海冰覆盖度查找表(海冰覆盖度每次增加1%),通过观测值与模拟值的比对得到海冰覆盖度,由该数据集计算得到的北极海冰范围在大部分区域与实际情况相符。该产品虽已进行通道间匹配误差修正和定位精度偏差订正,但由于其搭载的微波成像仪(Microwave Radiation Imager, MWRI)天线长度有限,造成传感器探测到的地物回波信号相对较弱,难以区分海冰和近岸附近的陆地,影响了该数据集的精度和应用。为解决这一问题,本文基于美国冰雪中心(National Snow and Ice Data Center, NSIDC)发布的海冰产品对FY海冰数据集进行优化,NSIDC产品利用判断矩阵对海岸线附近的像元进行识别,并对误差像元进行不同程度的修正,由NSIDC产品计算得到的北极海冰范围与实际情况更为符合。数据集优化大大提高了FY海冰数据集的精度,研究结果表明,优化后FY海冰数据集与NSIDC产品相关系数高达0.9997,且二者日、月、年平均最大海冰范围偏差仅为3.5%、1.9%、0.9%,且FY海冰数据集优化过程对其较好的空间分异特征无明显影响。该数据集可正确地反映北极海冰范围及其变化情况,且海岸线附近海冰的分布情况更准确,可为北极海冰变化研究提供可靠的基础数据。  相似文献   

2.
The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.  相似文献   

3.
The Arctic is experiencing a significant warming trend as well as a decadal oscillation. The atmospheric circulation represented by the Polar Vortex and the sea ice cover show decadal variabilities, while it has been difficult to reveal the decadal oscillation from the ocean interior. The recent distribution of Russian hydrochemical data collected from the Arctic Basin provides useful information on ocean interior variabilities. Silicate is used to provide the most valuable data for showing the boundary between the silicate-rich Pacific Water and the opposite Atlantic Water. Here, it is assumed that the silicate distribution receives minor influence from seasonal biological productivity and Siberian Rivers outflow. It shows a clear maximum around 100m depth in the Canada Basin, along with a vertical gradient below 100 m, which provides information on the vertical motion of the upper boundary of the Atlantic Water at a decadal time scale. The boundary shifts upward (downward), as realized by the silicate reduction (increase) at a fixed depth, responding to a more intense (weaker) Polar Vortex or a positive (negative) phase of the Arctic Oscillation. A coupled ice-ocean model is employed to reconstruct this decadal oscillation.  相似文献   

4.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radiative energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.  相似文献   

5.
盐沉淀是含水层CO2封存中需要关注的问题。当前,大多数数值模拟没有考虑盐沉淀引起的地层孔隙度和渗透率变化对流体流动的反馈作用。以鄂尔多斯盆地刘家沟组地层为例,利用TOUGH2软件建立了一个二维模型。通过修改程序源代码,使得模型能考虑盐沉淀对流体流动的反馈作用。模拟结果表明,刘家沟组地层在CO2注入20 a时,盐沉淀的反馈作用使得注入井附近地层压力提升达到了0.87MPa,储层注入性损失7.17%。地层水盐度对盐沉淀及其反馈作用的影响最大,CO2注入速度的影响次之,地层渗透率的影响最小。在地层水盐度较高时,固体盐饱和度显著增加,从而造成地层渗透率明显下降。当地层水盐度为0.24时,盐沉淀造成注入性损失45.32%,引起的地层压力提升达到了12.14MPa。因此,需要特别关注高盐度地层水引起的盐沉淀及其反馈作用。   相似文献   

6.
A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD.  相似文献   

7.
Almost half of the oceanic water columns exhibit double-diffusion. The importance of double-diffusion in global oceans‘ salt and heat fluxes, water-mass formation and mixing, and circulation is increasingly recognized. However, such an important physical process in the ocean has not been well studied. One of the reasons is the difficulty of parameterizing and quantifying the processes. The paper presented here attempts to quantify the double-diffusive fluxes of salt and heat in the ocean. Previous qualitative analysis by applying the water-mass Turner angle, mTu, to the North Pacific Intermediate Water (NPIW) layer showed a favorable condition for salt-fingering in the upper NPIW due to the overlying warm/salty water above the cold/fresh NPIW core, and a doubly-stable condition in the lower NPIW where potential temperature decreases with depth while salinity increases, inducing double stratification with respect to both potential temperature and salinity. The present study gives a quantitative estimate of double-diffusive fluxes of salt and heat contributed by salt-fingering in the upper NPIW layer.  相似文献   

8.
This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well the Atlantic Water core temperature (AWCT) in the Arctic Ocean and shows that four largest decadalscale warming episodes occurred in the 1930s, 70s, 80s, and 90s, in agreement with the hydrographic observational data. The difference is that there was no pre-warming prior to the 1930s episode, while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s, leading the 1990s into the largest and prolonged warming in the 20th century. Over the last century, the simulated heat transport via Fram Strait and the Barents Sea was estimated to be, on average, 31.32 TW and 14.82 TW, respectively, while the Bering Strait also provides 15.94 TW heat into the west- ern Arctic Ocean. Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT ( C = 0.75 ) at 0- lag. The modeled North Atlantic Oscillation (NAO) index has a significant correlation with the heat transport ( C = 0.37 ). The observed AWCT has a significant correlation with both the modeled AWCT ( C =0.49) and the heat transport ( C =0.41 ). However, the modeled NAO index does not significantly correlate with either the observed AWCT ( C = 0.03 ) or modeled AWCT ( C = 0.16 ) at a zero-lag, indicating that the Arctic climate system is far more complex than expected.  相似文献   

9.
A regional sea ice-ocean coupled model for the Arctic Ocean was developed, based on the MITgcm ocean circulation model and classical Hibler79 type two categorythermodynamics-dynamics sea ice model. The sea ice dynamics and thermodynamicswere considered based on Viscous-Plastic (VP) and Winton three-layer models, respectively. A detailed configuration of coupled model has been introduced. Special attention has been paid to the model grid setup, subgrid paramerization, ice-ocean coupling and open boundary treatment. The coupled model was then applied and two test run examples were presented. The first model run was a climatology simulation with 10 years (1992?002) averaged NCAR/NCEP reanalysis data as atmospheric forcing. The second model run was a seasonal simulation for the period of 1992?007. The atmospheric forcing was daily NCAR/NCEP reanalysis. The climatology simulation captured the general pattern of the sea ice thickness distribution of the Arctic, i.e., the thickest sea ice is situated around the CanadaArchipelago and the north coast of the Greenland. For the second model run, themodeled September Sea ice extent anomaly from 1992?007 was highly correlated with the observations, with a linear correlation coefficient of 0.88. Theminimum of the Arctic sea ice area in the September of 2007 was unprecedented. The modeled sea ice area and extent for this minimum was overestimated relative to the observations. However, it captured the general pattern of the sea ice retreat.  相似文献   

10.
We applied a primitive equation ocean model to simulate submesoscale activities and processes over the shelf of the northern South China Sea (NSCS) with a one-way nesting technology for downscaling. The temperature and density fields showed that submesoscale activities were ubiquitous in the NSCS shelf. The vertical velocity was considerably enhanced in submesoscale processes and could reach an average of 58 m per day in the subsurface. At this point, the mixed layer depth also was deepened along the front, and the surface kinetic energy also increased with the intense vertical movement induced by submesoscale activity. Thus, submesoscale stirring/mixing is important for tracers, such as temperature, salinity, nutrients, dissolved organic, and inorganic carbon. This result may have implication for climate and biogeochemical investigations.  相似文献   

11.
Variation in intermediate water salinity in the South China Sea (SCS) between the 1960s and 1980s was studied using historical hydrographic data. The results demonstrate that the water was significantly fresher in the 1980s than in the 1960s, indicating that vertical mixing at intermediate water depth was reduced in the 1980s. This was partially because of the change of the SCS meridional overturning circulation (MOC) connecting local intermediate water with deep water. Data assimilation showed a 0.5Sv (1 Sv=10 6m 3/s) reduction in the strength of the MOC, which is about one third of the mean SCS MOC. Because the SCS MOC is linked to the Pacific Ocean, such an interdecadal variation in the intermediate water SCS may reflect anthropogenic climate change in the world ocean.  相似文献   

12.
Status of the Recent Declining of Arctic Sea Ice Studies   总被引:2,自引:0,他引:2  
In the past 30 years, a large-scale change occurred in the Arctic climatic system, which had never been observed before 1980s. At the same time, the Arctic sea ice experienced a special evolution with more and more rapidly dramatic declining. In this circumstance, the Arctic sea ice became a new focus of the Arctic research. The recent advancements about abrupt change of the Arctic sea ice are reviewed in this paper .The previous analyses have demonstrated the accelerated declining trend of Arctic sea ice extent in the past 30 years, based on in-situ and satellite-based observations of atmosphere, as well as the results of global and regional climate simulations. Especially in summer, the rate of decrease for the ice extents was above 10% per decade. In present paper, the evolution characteristics of the arctic sea ice and its possible cause are discussed in three aspects, i.e. the sea ice physical properties, the interaction process of sea ice, ocean and atmosphere and its response and feedback mechanism to global and arctic climate system.  相似文献   

13.
Soil organic carbon (SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set (n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature (MAT) and mean annual precipitation (MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP (P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.  相似文献   

14.
Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor(FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1 c signaling-dependent Ba F3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.  相似文献   

15.
In order to quantitatively evaluate the spurious dianeutral mixing in a global ocean model MPAS-Ocean(Model for Prediction Across Scales) using a spherical centroidal voronoi tessellations developed jointly by the National Center for Atmospheric Research and the Los Alamos National Laboratory in the United States, we choose z* vertical coordinate system in MPAS-Ocean, in which all physical mixing processes, such as convection adjustment and explicit diffusion parameter schemes, are omitted, using a linear equation of state. By calculating the Reference Potential Energy(RPE), front revolution position, time rate of RPE change, probability density function distribution and dimensionless parameter χ, from the perspectives of resolution, viscosity, Horizontal Grid Reynolds Number(HGRN), Re?, and momentum transmission scheme, using two ideal cases, overflow and baroclinic eddy channel, we qualitatively analyze the simulation results by comparison with the three non-isopycnal models in Ilicak et al.(2012), i.e., MITGCM, MOM, and ROMS. The results show that the spurious dianeutral mixing in the MPAS-Ocean increases over time. The spurious dianeutral transport is proportional to the HGRN directly and is reduced by increasing the lateral viscosity or using a finer resolution to control HGRN. When the HGRN is less than 10, spurious transport is reduced significantly. When using the proper viscosity closure, MPAS-Ocean performs better than MITGCM and MOM, closely to ROMS, in the 2D case without rotation, and much better than the above-mentioned three ocean models under the condition of 3D space with rotation due to the cell area difference between the hexagon cell and the quadrilateral cell with the same resolution. Both the Zalesak(1979) flux corrected transport scheme and Leith closure in MPAS-Ocean play an excellent role in reducing spurious dianeutral mixing. The performance of Leith scheme is preferable to the condition of three-dimensional baroclinic eddy.  相似文献   

16.
Insufficient vertical mixing in the upper ocean during summer is a common problem of oceanic circulation and climate models. The turbulence associated with non-breaking waves is widely believed to effectively solve this problem. In many studies, non-breaking surface wave processes are attributed to the effects of Langmuir circulations(LCs). In the present work, the influences of LCs on the upper-ocean thermal structure are examined by using one-and three-dimensional ocean circulation, as well as climate, models. The results indicated that the effect of vertical mixing enhanced by LCs is limited to the upper ocean. The models evaluated, including those considering LC effects alone and the combined effects of LCs and wave breaking, failed to produce a reasonable summertime thermocline, resulting in a large cold bias in the subsurface layer. Therefore, while they can slightly reduce the biases of mixed layer depths and sea surface temperatures in models, LCs are insufficient to solve the problem of insufficient vertical mixing. Moreover, restriction of non-breaking surface wave-induced processes in LCs may be questionable.  相似文献   

17.
We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary. The average numbers of Synechococcus spp.(Syn) and picoeukaryotes(Euk) were(2.7 ±5.1) ×103 and(1.1±1.4) ×103 cells m L-1, respectively. Prochlorococcus spp.(Pro) was only found in the high-salinity brackish water with the concentration of 3.0×103 cells m L-1. Syn and Euk numbers both tended to increase offshore and Syn showed a larger variation in cell abundance than Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean. The response of different picophytoplankton groups to environmental variables was different. Water temperature was more important in its control over Euk than over Syn, while nutrients were more important in their influence over Syn than over Euk. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient(i.e., freshwater zone with 0-5 range, fresh and saline water mixing zone with 5-20 range, and high-salinity brackish water zone with 20-32 range), where three different phytoplankton communities were discovered, suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.  相似文献   

18.
The Arctic vortex is a persistent large-scale cyclonic circulation in the middle and upper troposphere and the stratosphere. Its activity and variation control the semi-permanent active centers of Pan-Arctic and the short-time cyclone activity in the subarctic areas. Its strength variation, which directly relates to the atmosphere, ocean, sea ice and ecosystem of the Arctic, can affect the lower atmospheric circulation, the weather of subarctic area and even the weather of middle latitude areas. The 2003 Chinese Second Arctic Research Expedition experienced the transition of the stratosphereic circulation from a warm anticyclone to a cold cyclone during the ending period of Arctic summertime, a typical establishing process of the polar vortex circulation. The impact of the polar vortex: variation on the low-level circulation has been investigated by some scientists through studying the coupling mechanisms of the stratosphere and troposphere. The impact of the Stratospheric Sudden Warming (SFW) events on the polar vortex variation was drawing people's great attention in the fifties of the last century. The Arctic Oscillation ( AO), relating to the variation of the Arctic vortex, has been used to study the impact of the Arctic vortex on climate change. The recent Arctic vortex studies are simply reviewed and some discussions on the Arctic vertex are given in the paper. Some different views and questions are also discussed.  相似文献   

19.
Role of sea ice in air-sea exchange and its relation to sea fog   总被引:1,自引:0,他引:1  
Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchange was studied. The study shows that the kinds, distribution and thickness of sea ice and their variation significantly influence the air-sea heat exchange. In floating ice area, the heat momentum transferred from ocean to atmosphere is in form of latent heat; latent heat flux is closely related to floating ice concentration; if floating ice is less, the heat flux would be larger. Latent heat flux is about 21 23.6 W*m-2, which is greater than sensible heat flux. On ice field or giant floating ice, heat momentum transferred from atmosphere to sea ice or snow surface is in form of sensible heat. In the floating ice area or polynya, sea-air exchange is the most active, and also the most sensible for climate. Also this area is the most important condition for the creation of Arctic vapor fog. The heat exchange of a large-scale vapor fog process of about 500000 km2 on Aug. 21 22,1999 was calculated; the heat momentum transferred from ocean to air was about 14.8×109 kW. There are various kinds of sea fog, radiation fog, vapor fog and advection fog, forming in the Arctic Ocean in summer. One important cause is the existence of sea ice and its resultant complexity of both underlying surface and sea-air exchange.  相似文献   

20.
Using hydrographic measurements from three recent surveys in the western tropical Pacific, this study revealed the existence and general features of thermohaline finestructure near the northern Philippine coast. Pronounced finestructures were detected in the layers of the North Pacific Tropical Water (NPTW) and the North Pacific Intermediate Water (NPIW) during all three cruises and shown to be mainly thermohaline intrusions. Characteristics of the intrusions were further investigated with spiciness curvature and salinity anomaly methods. The vertical scale of the intrusions was 20-50m and 50-100m in the NPTW and NPIW layers, respectively. Within the NPTW layer, the Turner angle distribution and correlation between salinity and density anomalies suggested that diffusive convection between surface fresh water and subsurface saline water played an important role in the development and maintenance of the intrusions. In addition, connection between thermohaline finestructure and larger-scale oceanic processes was explored using historical hydrographic data. The results reveal that the salinity field and the distribution of the intrusions in this region were largely determined by mesoscale eddies. As a result of eddy stirring, both isopycnal and diapycnal temperature/salinity gradients were strengthened, which gave rise to the development of thermohaline intrusions. The intrusions acted to enhance heat and salt fluxes and resulted in the mixing of water masses being more efficient. By linking mesoscale eddy stirring to micro-scale diffusion, thermohaline finestructure plays a vital role in the ocean energy cascade and water mass conversion in the northern Philippine Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号